Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

\left(4n+4\right)\left(n-4\right)+4n\times 6=5n\left(n+1\right)
Variable n cannot be equal to any of the values -1,0 since division by zero is not defined. Multiply both sides of the equation by 4n\left(n+1\right), the least common multiple of n,n+1,4.
4n^{2}-12n-16+4n\times 6=5n\left(n+1\right)
Use the distributive property to multiply 4n+4 by n-4 and combine like terms.
4n^{2}-12n-16+24n=5n\left(n+1\right)
Multiply 4 and 6 to get 24.
4n^{2}+12n-16=5n\left(n+1\right)
Combine -12n and 24n to get 12n.
4n^{2}+12n-16=5n^{2}+5n
Use the distributive property to multiply 5n by n+1.
4n^{2}+12n-16-5n^{2}=5n
Subtract 5n^{2} from both sides.
-n^{2}+12n-16=5n
Combine 4n^{2} and -5n^{2} to get -n^{2}.
-n^{2}+12n-16-5n=0
Subtract 5n from both sides.
-n^{2}+7n-16=0
Combine 12n and -5n to get 7n.
n=\frac{-7±\sqrt{7^{2}-4\left(-1\right)\left(-16\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 7 for b, and -16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-7±\sqrt{49-4\left(-1\right)\left(-16\right)}}{2\left(-1\right)}
Square 7.
n=\frac{-7±\sqrt{49+4\left(-16\right)}}{2\left(-1\right)}
Multiply -4 times -1.
n=\frac{-7±\sqrt{49-64}}{2\left(-1\right)}
Multiply 4 times -16.
n=\frac{-7±\sqrt{-15}}{2\left(-1\right)}
Add 49 to -64.
n=\frac{-7±\sqrt{15}i}{2\left(-1\right)}
Take the square root of -15.
n=\frac{-7±\sqrt{15}i}{-2}
Multiply 2 times -1.
n=\frac{-7+\sqrt{15}i}{-2}
Now solve the equation n=\frac{-7±\sqrt{15}i}{-2} when ± is plus. Add -7 to i\sqrt{15}.
n=\frac{-\sqrt{15}i+7}{2}
Divide -7+i\sqrt{15} by -2.
n=\frac{-\sqrt{15}i-7}{-2}
Now solve the equation n=\frac{-7±\sqrt{15}i}{-2} when ± is minus. Subtract i\sqrt{15} from -7.
n=\frac{7+\sqrt{15}i}{2}
Divide -7-i\sqrt{15} by -2.
n=\frac{-\sqrt{15}i+7}{2} n=\frac{7+\sqrt{15}i}{2}
The equation is now solved.
\left(4n+4\right)\left(n-4\right)+4n\times 6=5n\left(n+1\right)
Variable n cannot be equal to any of the values -1,0 since division by zero is not defined. Multiply both sides of the equation by 4n\left(n+1\right), the least common multiple of n,n+1,4.
4n^{2}-12n-16+4n\times 6=5n\left(n+1\right)
Use the distributive property to multiply 4n+4 by n-4 and combine like terms.
4n^{2}-12n-16+24n=5n\left(n+1\right)
Multiply 4 and 6 to get 24.
4n^{2}+12n-16=5n\left(n+1\right)
Combine -12n and 24n to get 12n.
4n^{2}+12n-16=5n^{2}+5n
Use the distributive property to multiply 5n by n+1.
4n^{2}+12n-16-5n^{2}=5n
Subtract 5n^{2} from both sides.
-n^{2}+12n-16=5n
Combine 4n^{2} and -5n^{2} to get -n^{2}.
-n^{2}+12n-16-5n=0
Subtract 5n from both sides.
-n^{2}+7n-16=0
Combine 12n and -5n to get 7n.
-n^{2}+7n=16
Add 16 to both sides. Anything plus zero gives itself.
\frac{-n^{2}+7n}{-1}=\frac{16}{-1}
Divide both sides by -1.
n^{2}+\frac{7}{-1}n=\frac{16}{-1}
Dividing by -1 undoes the multiplication by -1.
n^{2}-7n=\frac{16}{-1}
Divide 7 by -1.
n^{2}-7n=-16
Divide 16 by -1.
n^{2}-7n+\left(-\frac{7}{2}\right)^{2}=-16+\left(-\frac{7}{2}\right)^{2}
Divide -7, the coefficient of the x term, by 2 to get -\frac{7}{2}. Then add the square of -\frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-7n+\frac{49}{4}=-16+\frac{49}{4}
Square -\frac{7}{2} by squaring both the numerator and the denominator of the fraction.
n^{2}-7n+\frac{49}{4}=-\frac{15}{4}
Add -16 to \frac{49}{4}.
\left(n-\frac{7}{2}\right)^{2}=-\frac{15}{4}
Factor n^{2}-7n+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{7}{2}\right)^{2}}=\sqrt{-\frac{15}{4}}
Take the square root of both sides of the equation.
n-\frac{7}{2}=\frac{\sqrt{15}i}{2} n-\frac{7}{2}=-\frac{\sqrt{15}i}{2}
Simplify.
n=\frac{7+\sqrt{15}i}{2} n=\frac{-\sqrt{15}i+7}{2}
Add \frac{7}{2} to both sides of the equation.