Solve for n
n=-\frac{32}{49}\approx -0.653061224
Share
Copied to clipboard
5\left(n-12\right)=6\times 9n-28
Multiply both sides of the equation by 30, the least common multiple of 6,5,15.
5n-60=6\times 9n-28
Use the distributive property to multiply 5 by n-12.
5n-60=54n-28
Multiply 6 and 9 to get 54.
5n-60-54n=-28
Subtract 54n from both sides.
-49n-60=-28
Combine 5n and -54n to get -49n.
-49n=-28+60
Add 60 to both sides.
-49n=32
Add -28 and 60 to get 32.
n=\frac{32}{-49}
Divide both sides by -49.
n=-\frac{32}{49}
Fraction \frac{32}{-49} can be rewritten as -\frac{32}{49} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}