Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{n\left(n-m\right)}{n-m}-\frac{n^{2}}{n-m}}{1+\frac{m^{2}}{n^{2}-m^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply n times \frac{n-m}{n-m}.
\frac{\frac{n\left(n-m\right)-n^{2}}{n-m}}{1+\frac{m^{2}}{n^{2}-m^{2}}}
Since \frac{n\left(n-m\right)}{n-m} and \frac{n^{2}}{n-m} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{n^{2}-nm-n^{2}}{n-m}}{1+\frac{m^{2}}{n^{2}-m^{2}}}
Do the multiplications in n\left(n-m\right)-n^{2}.
\frac{\frac{-nm}{n-m}}{1+\frac{m^{2}}{n^{2}-m^{2}}}
Combine like terms in n^{2}-nm-n^{2}.
\frac{\frac{-nm}{n-m}}{1+\frac{m^{2}}{\left(m+n\right)\left(-m+n\right)}}
Factor n^{2}-m^{2}.
\frac{\frac{-nm}{n-m}}{\frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)}+\frac{m^{2}}{\left(m+n\right)\left(-m+n\right)}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)}.
\frac{\frac{-nm}{n-m}}{\frac{\left(m+n\right)\left(-m+n\right)+m^{2}}{\left(m+n\right)\left(-m+n\right)}}
Since \frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)} and \frac{m^{2}}{\left(m+n\right)\left(-m+n\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{-nm}{n-m}}{\frac{-m^{2}+mn-nm+n^{2}+m^{2}}{\left(m+n\right)\left(-m+n\right)}}
Do the multiplications in \left(m+n\right)\left(-m+n\right)+m^{2}.
\frac{\frac{-nm}{n-m}}{\frac{n^{2}}{\left(m+n\right)\left(-m+n\right)}}
Combine like terms in -m^{2}+mn-nm+n^{2}+m^{2}.
\frac{-nm\left(m+n\right)\left(-m+n\right)}{\left(n-m\right)n^{2}}
Divide \frac{-nm}{n-m} by \frac{n^{2}}{\left(m+n\right)\left(-m+n\right)} by multiplying \frac{-nm}{n-m} by the reciprocal of \frac{n^{2}}{\left(m+n\right)\left(-m+n\right)}.
\frac{-m\left(m+n\right)}{n}
Cancel out n\left(-m+n\right) in both numerator and denominator.
\frac{-m^{2}-mn}{n}
Use the distributive property to multiply -m by m+n.
\frac{\frac{n\left(n-m\right)}{n-m}-\frac{n^{2}}{n-m}}{1+\frac{m^{2}}{n^{2}-m^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply n times \frac{n-m}{n-m}.
\frac{\frac{n\left(n-m\right)-n^{2}}{n-m}}{1+\frac{m^{2}}{n^{2}-m^{2}}}
Since \frac{n\left(n-m\right)}{n-m} and \frac{n^{2}}{n-m} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{n^{2}-nm-n^{2}}{n-m}}{1+\frac{m^{2}}{n^{2}-m^{2}}}
Do the multiplications in n\left(n-m\right)-n^{2}.
\frac{\frac{-nm}{n-m}}{1+\frac{m^{2}}{n^{2}-m^{2}}}
Combine like terms in n^{2}-nm-n^{2}.
\frac{\frac{-nm}{n-m}}{1+\frac{m^{2}}{\left(m+n\right)\left(-m+n\right)}}
Factor n^{2}-m^{2}.
\frac{\frac{-nm}{n-m}}{\frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)}+\frac{m^{2}}{\left(m+n\right)\left(-m+n\right)}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)}.
\frac{\frac{-nm}{n-m}}{\frac{\left(m+n\right)\left(-m+n\right)+m^{2}}{\left(m+n\right)\left(-m+n\right)}}
Since \frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)} and \frac{m^{2}}{\left(m+n\right)\left(-m+n\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{-nm}{n-m}}{\frac{-m^{2}+mn-nm+n^{2}+m^{2}}{\left(m+n\right)\left(-m+n\right)}}
Do the multiplications in \left(m+n\right)\left(-m+n\right)+m^{2}.
\frac{\frac{-nm}{n-m}}{\frac{n^{2}}{\left(m+n\right)\left(-m+n\right)}}
Combine like terms in -m^{2}+mn-nm+n^{2}+m^{2}.
\frac{-nm\left(m+n\right)\left(-m+n\right)}{\left(n-m\right)n^{2}}
Divide \frac{-nm}{n-m} by \frac{n^{2}}{\left(m+n\right)\left(-m+n\right)} by multiplying \frac{-nm}{n-m} by the reciprocal of \frac{n^{2}}{\left(m+n\right)\left(-m+n\right)}.
\frac{-m\left(m+n\right)}{n}
Cancel out n\left(-m+n\right) in both numerator and denominator.
\frac{-m^{2}-mn}{n}
Use the distributive property to multiply -m by m+n.