Solve for n
n=-15
n=16
Share
Copied to clipboard
n\left(n-3\right)+2n=240
Multiply both sides of the equation by 2.
n^{2}-3n+2n=240
Use the distributive property to multiply n by n-3.
n^{2}-n=240
Combine -3n and 2n to get -n.
n^{2}-n-240=0
Subtract 240 from both sides.
n=\frac{-\left(-1\right)±\sqrt{1-4\left(-240\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -1 for b, and -240 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-1\right)±\sqrt{1+960}}{2}
Multiply -4 times -240.
n=\frac{-\left(-1\right)±\sqrt{961}}{2}
Add 1 to 960.
n=\frac{-\left(-1\right)±31}{2}
Take the square root of 961.
n=\frac{1±31}{2}
The opposite of -1 is 1.
n=\frac{32}{2}
Now solve the equation n=\frac{1±31}{2} when ± is plus. Add 1 to 31.
n=16
Divide 32 by 2.
n=-\frac{30}{2}
Now solve the equation n=\frac{1±31}{2} when ± is minus. Subtract 31 from 1.
n=-15
Divide -30 by 2.
n=16 n=-15
The equation is now solved.
n\left(n-3\right)+2n=240
Multiply both sides of the equation by 2.
n^{2}-3n+2n=240
Use the distributive property to multiply n by n-3.
n^{2}-n=240
Combine -3n and 2n to get -n.
n^{2}-n+\left(-\frac{1}{2}\right)^{2}=240+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-n+\frac{1}{4}=240+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
n^{2}-n+\frac{1}{4}=\frac{961}{4}
Add 240 to \frac{1}{4}.
\left(n-\frac{1}{2}\right)^{2}=\frac{961}{4}
Factor n^{2}-n+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{1}{2}\right)^{2}}=\sqrt{\frac{961}{4}}
Take the square root of both sides of the equation.
n-\frac{1}{2}=\frac{31}{2} n-\frac{1}{2}=-\frac{31}{2}
Simplify.
n=16 n=-15
Add \frac{1}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}