Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

25n\left(n-1\right)=2\left(n+4\right)\left(n+5\right)
Variable n cannot be equal to any of the values -5,-4 since division by zero is not defined. Multiply both sides of the equation by 25\left(n+4\right)\left(n+5\right), the least common multiple of \left(n+5\right)\left(n+4\right),25.
25n^{2}-25n=2\left(n+4\right)\left(n+5\right)
Use the distributive property to multiply 25n by n-1.
25n^{2}-25n=\left(2n+8\right)\left(n+5\right)
Use the distributive property to multiply 2 by n+4.
25n^{2}-25n=2n^{2}+18n+40
Use the distributive property to multiply 2n+8 by n+5 and combine like terms.
25n^{2}-25n-2n^{2}=18n+40
Subtract 2n^{2} from both sides.
23n^{2}-25n=18n+40
Combine 25n^{2} and -2n^{2} to get 23n^{2}.
23n^{2}-25n-18n=40
Subtract 18n from both sides.
23n^{2}-43n=40
Combine -25n and -18n to get -43n.
23n^{2}-43n-40=0
Subtract 40 from both sides.
n=\frac{-\left(-43\right)±\sqrt{\left(-43\right)^{2}-4\times 23\left(-40\right)}}{2\times 23}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 23 for a, -43 for b, and -40 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-43\right)±\sqrt{1849-4\times 23\left(-40\right)}}{2\times 23}
Square -43.
n=\frac{-\left(-43\right)±\sqrt{1849-92\left(-40\right)}}{2\times 23}
Multiply -4 times 23.
n=\frac{-\left(-43\right)±\sqrt{1849+3680}}{2\times 23}
Multiply -92 times -40.
n=\frac{-\left(-43\right)±\sqrt{5529}}{2\times 23}
Add 1849 to 3680.
n=\frac{43±\sqrt{5529}}{2\times 23}
The opposite of -43 is 43.
n=\frac{43±\sqrt{5529}}{46}
Multiply 2 times 23.
n=\frac{\sqrt{5529}+43}{46}
Now solve the equation n=\frac{43±\sqrt{5529}}{46} when ± is plus. Add 43 to \sqrt{5529}.
n=\frac{43-\sqrt{5529}}{46}
Now solve the equation n=\frac{43±\sqrt{5529}}{46} when ± is minus. Subtract \sqrt{5529} from 43.
n=\frac{\sqrt{5529}+43}{46} n=\frac{43-\sqrt{5529}}{46}
The equation is now solved.
25n\left(n-1\right)=2\left(n+4\right)\left(n+5\right)
Variable n cannot be equal to any of the values -5,-4 since division by zero is not defined. Multiply both sides of the equation by 25\left(n+4\right)\left(n+5\right), the least common multiple of \left(n+5\right)\left(n+4\right),25.
25n^{2}-25n=2\left(n+4\right)\left(n+5\right)
Use the distributive property to multiply 25n by n-1.
25n^{2}-25n=\left(2n+8\right)\left(n+5\right)
Use the distributive property to multiply 2 by n+4.
25n^{2}-25n=2n^{2}+18n+40
Use the distributive property to multiply 2n+8 by n+5 and combine like terms.
25n^{2}-25n-2n^{2}=18n+40
Subtract 2n^{2} from both sides.
23n^{2}-25n=18n+40
Combine 25n^{2} and -2n^{2} to get 23n^{2}.
23n^{2}-25n-18n=40
Subtract 18n from both sides.
23n^{2}-43n=40
Combine -25n and -18n to get -43n.
\frac{23n^{2}-43n}{23}=\frac{40}{23}
Divide both sides by 23.
n^{2}-\frac{43}{23}n=\frac{40}{23}
Dividing by 23 undoes the multiplication by 23.
n^{2}-\frac{43}{23}n+\left(-\frac{43}{46}\right)^{2}=\frac{40}{23}+\left(-\frac{43}{46}\right)^{2}
Divide -\frac{43}{23}, the coefficient of the x term, by 2 to get -\frac{43}{46}. Then add the square of -\frac{43}{46} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-\frac{43}{23}n+\frac{1849}{2116}=\frac{40}{23}+\frac{1849}{2116}
Square -\frac{43}{46} by squaring both the numerator and the denominator of the fraction.
n^{2}-\frac{43}{23}n+\frac{1849}{2116}=\frac{5529}{2116}
Add \frac{40}{23} to \frac{1849}{2116} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(n-\frac{43}{46}\right)^{2}=\frac{5529}{2116}
Factor n^{2}-\frac{43}{23}n+\frac{1849}{2116}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{43}{46}\right)^{2}}=\sqrt{\frac{5529}{2116}}
Take the square root of both sides of the equation.
n-\frac{43}{46}=\frac{\sqrt{5529}}{46} n-\frac{43}{46}=-\frac{\sqrt{5529}}{46}
Simplify.
n=\frac{\sqrt{5529}+43}{46} n=\frac{43-\sqrt{5529}}{46}
Add \frac{43}{46} to both sides of the equation.