Solve for m
m=-\frac{2n^{2}+n-546}{n\left(2n+1\right)}
n\neq -\frac{1}{2}\text{ and }n\neq 0
Solve for n
n=\frac{\sqrt{\left(m+1\right)\left(m+4369\right)}-m-1}{4\left(m+1\right)}
n=-\frac{\sqrt{\left(m+1\right)\left(m+4369\right)}+m+1}{4\left(m+1\right)}\text{, }m>-1\text{ or }m\leq -4369
Share
Copied to clipboard
n\left(m+1\right)\left(2n+1\right)=91\times 6
Multiply both sides by 6.
\left(nm+n\right)\left(2n+1\right)=91\times 6
Use the distributive property to multiply n by m+1.
2mn^{2}+nm+2n^{2}+n=91\times 6
Use the distributive property to multiply nm+n by 2n+1.
2mn^{2}+nm+2n^{2}+n=546
Multiply 91 and 6 to get 546.
2mn^{2}+nm+n=546-2n^{2}
Subtract 2n^{2} from both sides.
2mn^{2}+nm=546-2n^{2}-n
Subtract n from both sides.
\left(2n^{2}+n\right)m=546-2n^{2}-n
Combine all terms containing m.
\left(2n^{2}+n\right)m=546-n-2n^{2}
The equation is in standard form.
\frac{\left(2n^{2}+n\right)m}{2n^{2}+n}=\frac{546-n-2n^{2}}{2n^{2}+n}
Divide both sides by 2n^{2}+n.
m=\frac{546-n-2n^{2}}{2n^{2}+n}
Dividing by 2n^{2}+n undoes the multiplication by 2n^{2}+n.
m=\frac{546-n-2n^{2}}{n\left(2n+1\right)}
Divide 546-2n^{2}-n by 2n^{2}+n.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}