Solve for n
n=\frac{\sqrt{4505}-75}{2}\approx -3.940351611
n=\frac{-\sqrt{4505}-75}{2}\approx -71.059648389
Share
Copied to clipboard
n\left(84+n-1-8\right)=-140\times 2
Multiply both sides by 2.
n\left(83+n-8\right)=-140\times 2
Subtract 1 from 84 to get 83.
n\left(75+n\right)=-140\times 2
Subtract 8 from 83 to get 75.
75n+n^{2}=-140\times 2
Use the distributive property to multiply n by 75+n.
75n+n^{2}=-280
Multiply -140 and 2 to get -280.
75n+n^{2}+280=0
Add 280 to both sides.
n^{2}+75n+280=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-75±\sqrt{75^{2}-4\times 280}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 75 for b, and 280 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-75±\sqrt{5625-4\times 280}}{2}
Square 75.
n=\frac{-75±\sqrt{5625-1120}}{2}
Multiply -4 times 280.
n=\frac{-75±\sqrt{4505}}{2}
Add 5625 to -1120.
n=\frac{\sqrt{4505}-75}{2}
Now solve the equation n=\frac{-75±\sqrt{4505}}{2} when ± is plus. Add -75 to \sqrt{4505}.
n=\frac{-\sqrt{4505}-75}{2}
Now solve the equation n=\frac{-75±\sqrt{4505}}{2} when ± is minus. Subtract \sqrt{4505} from -75.
n=\frac{\sqrt{4505}-75}{2} n=\frac{-\sqrt{4505}-75}{2}
The equation is now solved.
n\left(84+n-1-8\right)=-140\times 2
Multiply both sides by 2.
n\left(83+n-8\right)=-140\times 2
Subtract 1 from 84 to get 83.
n\left(75+n\right)=-140\times 2
Subtract 8 from 83 to get 75.
75n+n^{2}=-140\times 2
Use the distributive property to multiply n by 75+n.
75n+n^{2}=-280
Multiply -140 and 2 to get -280.
n^{2}+75n=-280
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
n^{2}+75n+\left(\frac{75}{2}\right)^{2}=-280+\left(\frac{75}{2}\right)^{2}
Divide 75, the coefficient of the x term, by 2 to get \frac{75}{2}. Then add the square of \frac{75}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+75n+\frac{5625}{4}=-280+\frac{5625}{4}
Square \frac{75}{2} by squaring both the numerator and the denominator of the fraction.
n^{2}+75n+\frac{5625}{4}=\frac{4505}{4}
Add -280 to \frac{5625}{4}.
\left(n+\frac{75}{2}\right)^{2}=\frac{4505}{4}
Factor n^{2}+75n+\frac{5625}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+\frac{75}{2}\right)^{2}}=\sqrt{\frac{4505}{4}}
Take the square root of both sides of the equation.
n+\frac{75}{2}=\frac{\sqrt{4505}}{2} n+\frac{75}{2}=-\frac{\sqrt{4505}}{2}
Simplify.
n=\frac{\sqrt{4505}-75}{2} n=\frac{-\sqrt{4505}-75}{2}
Subtract \frac{75}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}