Solve for c
c=\frac{n}{21}
n\neq 0
Solve for n
n=21c
c\neq 0
Share
Copied to clipboard
n+c\left(-16\right)=5c
Variable c cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by c.
n+c\left(-16\right)-5c=0
Subtract 5c from both sides.
n-21c=0
Combine c\left(-16\right) and -5c to get -21c.
-21c=-n
Subtract n from both sides. Anything subtracted from zero gives its negation.
\frac{-21c}{-21}=-\frac{n}{-21}
Divide both sides by -21.
c=-\frac{n}{-21}
Dividing by -21 undoes the multiplication by -21.
c=\frac{n}{21}
Divide -n by -21.
c=\frac{n}{21}\text{, }c\neq 0
Variable c cannot be equal to 0.
n+c\left(-16\right)=5c
Multiply both sides of the equation by c.
n=5c-c\left(-16\right)
Subtract c\left(-16\right) from both sides.
n=21c
Combine 5c and -c\left(-16\right) to get 21c.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}