Solve for n
n = \frac{528}{65} = 8\frac{8}{65} \approx 8.123076923
Share
Copied to clipboard
\frac{n\times 5}{4\times 5+1}=\frac{\frac{6\times 7+2}{7}}{\frac{3\times 4+1}{4}}
Divide n by \frac{4\times 5+1}{5} by multiplying n by the reciprocal of \frac{4\times 5+1}{5}.
\frac{n\times 5}{20+1}=\frac{\frac{6\times 7+2}{7}}{\frac{3\times 4+1}{4}}
Multiply 4 and 5 to get 20.
\frac{n\times 5}{21}=\frac{\frac{6\times 7+2}{7}}{\frac{3\times 4+1}{4}}
Add 20 and 1 to get 21.
\frac{n\times 5}{21}=\frac{\left(6\times 7+2\right)\times 4}{7\left(3\times 4+1\right)}
Divide \frac{6\times 7+2}{7} by \frac{3\times 4+1}{4} by multiplying \frac{6\times 7+2}{7} by the reciprocal of \frac{3\times 4+1}{4}.
\frac{n\times 5}{21}=\frac{\left(42+2\right)\times 4}{7\left(3\times 4+1\right)}
Multiply 6 and 7 to get 42.
\frac{n\times 5}{21}=\frac{44\times 4}{7\left(3\times 4+1\right)}
Add 42 and 2 to get 44.
\frac{n\times 5}{21}=\frac{176}{7\left(3\times 4+1\right)}
Multiply 44 and 4 to get 176.
\frac{n\times 5}{21}=\frac{176}{7\left(12+1\right)}
Multiply 3 and 4 to get 12.
\frac{n\times 5}{21}=\frac{176}{7\times 13}
Add 12 and 1 to get 13.
\frac{n\times 5}{21}=\frac{176}{91}
Multiply 7 and 13 to get 91.
n\times 5=\frac{176}{91}\times 21
Multiply both sides by 21.
n\times 5=\frac{176\times 21}{91}
Express \frac{176}{91}\times 21 as a single fraction.
n\times 5=\frac{3696}{91}
Multiply 176 and 21 to get 3696.
n\times 5=\frac{528}{13}
Reduce the fraction \frac{3696}{91} to lowest terms by extracting and canceling out 7.
n=\frac{\frac{528}{13}}{5}
Divide both sides by 5.
n=\frac{528}{13\times 5}
Express \frac{\frac{528}{13}}{5} as a single fraction.
n=\frac{528}{65}
Multiply 13 and 5 to get 65.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}