Solve for m
m=\frac{75s}{2n}
s\neq 0\text{ and }n\neq 0
Solve for n
n=\frac{75s}{2m}
m\neq 0\text{ and }s\neq 0
Share
Copied to clipboard
n=\frac{1}{1200}m^{-1}s\times 45000
Multiply both sides of the equation by 3.
n=\frac{75}{2}m^{-1}s
Multiply \frac{1}{1200} and 45000 to get \frac{75}{2}.
\frac{75}{2}m^{-1}s=n
Swap sides so that all variable terms are on the left hand side.
\frac{75}{2}\times \frac{1}{m}s=n
Reorder the terms.
\frac{75}{2}\times 2\times 1s=n\times 2m
Variable m cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2m, the least common multiple of 2,m.
75\times 1s=n\times 2m
Multiply \frac{75}{2} and 2 to get 75.
75s=n\times 2m
Multiply 75 and 1 to get 75.
n\times 2m=75s
Swap sides so that all variable terms are on the left hand side.
2nm=75s
The equation is in standard form.
\frac{2nm}{2n}=\frac{75s}{2n}
Divide both sides by 2n.
m=\frac{75s}{2n}
Dividing by 2n undoes the multiplication by 2n.
m=\frac{75s}{2n}\text{, }m\neq 0
Variable m cannot be equal to 0.
\frac{1}{3}n=\frac{25s}{2m}
The equation is in standard form.
\frac{\frac{1}{3}n}{\frac{1}{3}}=\frac{25s}{\frac{1}{3}\times 2m}
Multiply both sides by 3.
n=\frac{25s}{\frac{1}{3}\times 2m}
Dividing by \frac{1}{3} undoes the multiplication by \frac{1}{3}.
n=\frac{75s}{2m}
Divide \frac{25s}{2m} by \frac{1}{3} by multiplying \frac{25s}{2m} by the reciprocal of \frac{1}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}