Solve for n
n=\frac{37787666611011727}{3320737444462996091}\approx 0.0113793
Share
Copied to clipboard
\frac{n}{3 + n} = 0.0037787666611011727
Evaluate trigonometric functions in the problem
n=0.0037787666611011727\left(n+3\right)
Variable n cannot be equal to -3 since division by zero is not defined. Multiply both sides of the equation by n+3.
n=0.0037787666611011727n+0.0113362999833035181
Use the distributive property to multiply 0.0037787666611011727 by n+3.
n-0.0037787666611011727n=0.0113362999833035181
Subtract 0.0037787666611011727n from both sides.
0.9962212333388988273n=0.0113362999833035181
Combine n and -0.0037787666611011727n to get 0.9962212333388988273n.
n=\frac{0.0113362999833035181}{0.9962212333388988273}
Divide both sides by 0.9962212333388988273.
n=\frac{113362999833035181}{9962212333388988273}
Expand \frac{0.0113362999833035181}{0.9962212333388988273} by multiplying both numerator and the denominator by 10000000000000000000.
n=\frac{37787666611011727}{3320737444462996091}
Reduce the fraction \frac{113362999833035181}{9962212333388988273} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}