Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

n^{2}=5\left(n+1\right)
Variable n cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by n+1.
n^{2}=5n+5
Use the distributive property to multiply 5 by n+1.
n^{2}-5n=5
Subtract 5n from both sides.
n^{2}-5n-5=0
Subtract 5 from both sides.
n=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-5\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -5 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-5\right)±\sqrt{25-4\left(-5\right)}}{2}
Square -5.
n=\frac{-\left(-5\right)±\sqrt{25+20}}{2}
Multiply -4 times -5.
n=\frac{-\left(-5\right)±\sqrt{45}}{2}
Add 25 to 20.
n=\frac{-\left(-5\right)±3\sqrt{5}}{2}
Take the square root of 45.
n=\frac{5±3\sqrt{5}}{2}
The opposite of -5 is 5.
n=\frac{3\sqrt{5}+5}{2}
Now solve the equation n=\frac{5±3\sqrt{5}}{2} when ± is plus. Add 5 to 3\sqrt{5}.
n=\frac{5-3\sqrt{5}}{2}
Now solve the equation n=\frac{5±3\sqrt{5}}{2} when ± is minus. Subtract 3\sqrt{5} from 5.
n=\frac{3\sqrt{5}+5}{2} n=\frac{5-3\sqrt{5}}{2}
The equation is now solved.
n^{2}=5\left(n+1\right)
Variable n cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by n+1.
n^{2}=5n+5
Use the distributive property to multiply 5 by n+1.
n^{2}-5n=5
Subtract 5n from both sides.
n^{2}-5n+\left(-\frac{5}{2}\right)^{2}=5+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-5n+\frac{25}{4}=5+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
n^{2}-5n+\frac{25}{4}=\frac{45}{4}
Add 5 to \frac{25}{4}.
\left(n-\frac{5}{2}\right)^{2}=\frac{45}{4}
Factor n^{2}-5n+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{5}{2}\right)^{2}}=\sqrt{\frac{45}{4}}
Take the square root of both sides of the equation.
n-\frac{5}{2}=\frac{3\sqrt{5}}{2} n-\frac{5}{2}=-\frac{3\sqrt{5}}{2}
Simplify.
n=\frac{3\sqrt{5}+5}{2} n=\frac{5-3\sqrt{5}}{2}
Add \frac{5}{2} to both sides of the equation.