Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(n^{2}+8n+16\right)\left(n^{2}-8n+15\right)}{\left(n^{2}-n-20\right)\left(n^{2}-11m+24\right)}
Divide \frac{n^{2}+8n+16}{n^{2}-n-20} by \frac{n^{2}-11m+24}{n^{2}-8n+15} by multiplying \frac{n^{2}+8n+16}{n^{2}-n-20} by the reciprocal of \frac{n^{2}-11m+24}{n^{2}-8n+15}.
\frac{\left(n-5\right)\left(n-3\right)\left(n+4\right)^{2}}{\left(n-5\right)\left(n+4\right)\left(-11m+n^{2}+24\right)}
Factor the expressions that are not already factored.
\frac{\left(n-3\right)\left(n+4\right)}{-11m+n^{2}+24}
Cancel out \left(n-5\right)\left(n+4\right) in both numerator and denominator.
\frac{n^{2}+n-12}{-11m+n^{2}+24}
Expand the expression.
\frac{\left(n^{2}+8n+16\right)\left(n^{2}-8n+15\right)}{\left(n^{2}-n-20\right)\left(n^{2}-11m+24\right)}
Divide \frac{n^{2}+8n+16}{n^{2}-n-20} by \frac{n^{2}-11m+24}{n^{2}-8n+15} by multiplying \frac{n^{2}+8n+16}{n^{2}-n-20} by the reciprocal of \frac{n^{2}-11m+24}{n^{2}-8n+15}.
\frac{\left(n-5\right)\left(n-3\right)\left(n+4\right)^{2}}{\left(n-5\right)\left(n+4\right)\left(-11m+n^{2}+24\right)}
Factor the expressions that are not already factored.
\frac{\left(n-3\right)\left(n+4\right)}{-11m+n^{2}+24}
Cancel out \left(n-5\right)\left(n+4\right) in both numerator and denominator.
\frac{n^{2}+n-12}{-11m+n^{2}+24}
Expand the expression.