Solve for n
n = -\frac{23}{3} = -7\frac{2}{3} \approx -7.666666667
n=20
Share
Copied to clipboard
n\left(-34+\left(n-1\right)\times 3\right)=230\times 2
Multiply both sides by 2.
n\left(-34+3n-3\right)=230\times 2
Use the distributive property to multiply n-1 by 3.
n\left(-37+3n\right)=230\times 2
Subtract 3 from -34 to get -37.
-37n+3n^{2}=230\times 2
Use the distributive property to multiply n by -37+3n.
-37n+3n^{2}=460
Multiply 230 and 2 to get 460.
-37n+3n^{2}-460=0
Subtract 460 from both sides.
3n^{2}-37n-460=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-\left(-37\right)±\sqrt{\left(-37\right)^{2}-4\times 3\left(-460\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -37 for b, and -460 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-37\right)±\sqrt{1369-4\times 3\left(-460\right)}}{2\times 3}
Square -37.
n=\frac{-\left(-37\right)±\sqrt{1369-12\left(-460\right)}}{2\times 3}
Multiply -4 times 3.
n=\frac{-\left(-37\right)±\sqrt{1369+5520}}{2\times 3}
Multiply -12 times -460.
n=\frac{-\left(-37\right)±\sqrt{6889}}{2\times 3}
Add 1369 to 5520.
n=\frac{-\left(-37\right)±83}{2\times 3}
Take the square root of 6889.
n=\frac{37±83}{2\times 3}
The opposite of -37 is 37.
n=\frac{37±83}{6}
Multiply 2 times 3.
n=\frac{120}{6}
Now solve the equation n=\frac{37±83}{6} when ± is plus. Add 37 to 83.
n=20
Divide 120 by 6.
n=-\frac{46}{6}
Now solve the equation n=\frac{37±83}{6} when ± is minus. Subtract 83 from 37.
n=-\frac{23}{3}
Reduce the fraction \frac{-46}{6} to lowest terms by extracting and canceling out 2.
n=20 n=-\frac{23}{3}
The equation is now solved.
n\left(-34+\left(n-1\right)\times 3\right)=230\times 2
Multiply both sides by 2.
n\left(-34+3n-3\right)=230\times 2
Use the distributive property to multiply n-1 by 3.
n\left(-37+3n\right)=230\times 2
Subtract 3 from -34 to get -37.
-37n+3n^{2}=230\times 2
Use the distributive property to multiply n by -37+3n.
-37n+3n^{2}=460
Multiply 230 and 2 to get 460.
3n^{2}-37n=460
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{3n^{2}-37n}{3}=\frac{460}{3}
Divide both sides by 3.
n^{2}-\frac{37}{3}n=\frac{460}{3}
Dividing by 3 undoes the multiplication by 3.
n^{2}-\frac{37}{3}n+\left(-\frac{37}{6}\right)^{2}=\frac{460}{3}+\left(-\frac{37}{6}\right)^{2}
Divide -\frac{37}{3}, the coefficient of the x term, by 2 to get -\frac{37}{6}. Then add the square of -\frac{37}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-\frac{37}{3}n+\frac{1369}{36}=\frac{460}{3}+\frac{1369}{36}
Square -\frac{37}{6} by squaring both the numerator and the denominator of the fraction.
n^{2}-\frac{37}{3}n+\frac{1369}{36}=\frac{6889}{36}
Add \frac{460}{3} to \frac{1369}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(n-\frac{37}{6}\right)^{2}=\frac{6889}{36}
Factor n^{2}-\frac{37}{3}n+\frac{1369}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{37}{6}\right)^{2}}=\sqrt{\frac{6889}{36}}
Take the square root of both sides of the equation.
n-\frac{37}{6}=\frac{83}{6} n-\frac{37}{6}=-\frac{83}{6}
Simplify.
n=20 n=-\frac{23}{3}
Add \frac{37}{6} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}