Solve for n
n=-\left(u\left(v-u\right)+v\right)
v\neq u
Solve for u
\left\{\begin{matrix}u=\frac{\sqrt{4n+v^{2}+4v}+v}{2}\text{, }&\left(v<0\text{ or }n\neq -v\right)\text{ and }n\geq -\frac{v^{2}}{4}-v\\u=\frac{-\sqrt{4n+v^{2}+4v}+v}{2}\text{, }&\left(v>0\text{ or }n\neq -v\right)\text{ and }n\geq -\frac{v^{2}}{4}-v\end{matrix}\right.
Share
Copied to clipboard
n+v=u\left(u-v\right)
Multiply both sides of the equation by u-v.
n+v=u^{2}-uv
Use the distributive property to multiply u by u-v.
n=u^{2}-uv-v
Subtract v from both sides.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}