Solve for m
m=-\frac{n}{1-5n}
n\neq 0\text{ and }n\neq \frac{1}{5}
Solve for n
n=-\frac{m}{1-5m}
m\neq 0\text{ and }m\neq \frac{1}{5}
Share
Copied to clipboard
n+m=5mn
Variable m cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by mn.
n+m-5mn=0
Subtract 5mn from both sides.
m-5mn=-n
Subtract n from both sides. Anything subtracted from zero gives its negation.
\left(1-5n\right)m=-n
Combine all terms containing m.
\frac{\left(1-5n\right)m}{1-5n}=-\frac{n}{1-5n}
Divide both sides by 1-5n.
m=-\frac{n}{1-5n}
Dividing by 1-5n undoes the multiplication by 1-5n.
m=-\frac{n}{1-5n}\text{, }m\neq 0
Variable m cannot be equal to 0.
n+m=5mn
Variable n cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by mn.
n+m-5mn=0
Subtract 5mn from both sides.
n-5mn=-m
Subtract m from both sides. Anything subtracted from zero gives its negation.
\left(1-5m\right)n=-m
Combine all terms containing n.
\frac{\left(1-5m\right)n}{1-5m}=-\frac{m}{1-5m}
Divide both sides by 1-5m.
n=-\frac{m}{1-5m}
Dividing by 1-5m undoes the multiplication by 1-5m.
n=-\frac{m}{1-5m}\text{, }n\neq 0
Variable n cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}