Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

\left(n+4\right)n=3\left(n-\left(-\frac{1}{2}\sqrt{5}+\frac{3}{2}\right)\right)\left(n-\left(\frac{1}{2}\sqrt{5}+\frac{3}{2}\right)\right)
Multiply both sides of the equation by \left(n-\left(-\frac{1}{2}\sqrt{5}+\frac{3}{2}\right)\right)\left(n-\left(\frac{1}{2}\sqrt{5}+\frac{3}{2}\right)\right).
n^{2}+4n=3\left(n-\left(-\frac{1}{2}\sqrt{5}+\frac{3}{2}\right)\right)\left(n-\left(\frac{1}{2}\sqrt{5}+\frac{3}{2}\right)\right)
Use the distributive property to multiply n+4 by n.
n^{2}+4n=3\left(n+\frac{1}{2}\sqrt{5}-\frac{3}{2}\right)\left(n-\left(\frac{1}{2}\sqrt{5}+\frac{3}{2}\right)\right)
To find the opposite of -\frac{1}{2}\sqrt{5}+\frac{3}{2}, find the opposite of each term.
n^{2}+4n=3\left(n+\frac{1}{2}\sqrt{5}-\frac{3}{2}\right)\left(n-\frac{1}{2}\sqrt{5}-\frac{3}{2}\right)
To find the opposite of \frac{1}{2}\sqrt{5}+\frac{3}{2}, find the opposite of each term.
n^{2}+4n=\left(3n+\frac{3}{2}\sqrt{5}-\frac{9}{2}\right)\left(n-\frac{1}{2}\sqrt{5}-\frac{3}{2}\right)
Use the distributive property to multiply 3 by n+\frac{1}{2}\sqrt{5}-\frac{3}{2}.
n^{2}+4n=3n^{2}-9n-\frac{3}{4}\left(\sqrt{5}\right)^{2}+\frac{27}{4}
Use the distributive property to multiply 3n+\frac{3}{2}\sqrt{5}-\frac{9}{2} by n-\frac{1}{2}\sqrt{5}-\frac{3}{2} and combine like terms.
n^{2}+4n=3n^{2}-9n-\frac{3}{4}\times 5+\frac{27}{4}
The square of \sqrt{5} is 5.
n^{2}+4n=3n^{2}-9n-\frac{15}{4}+\frac{27}{4}
Multiply -\frac{3}{4} and 5 to get -\frac{15}{4}.
n^{2}+4n=3n^{2}-9n+3
Add -\frac{15}{4} and \frac{27}{4} to get 3.
n^{2}+4n-3n^{2}=-9n+3
Subtract 3n^{2} from both sides.
-2n^{2}+4n=-9n+3
Combine n^{2} and -3n^{2} to get -2n^{2}.
-2n^{2}+4n+9n=3
Add 9n to both sides.
-2n^{2}+13n=3
Combine 4n and 9n to get 13n.
-2n^{2}+13n-3=0
Subtract 3 from both sides.
n=\frac{-13±\sqrt{13^{2}-4\left(-2\right)\left(-3\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 13 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-13±\sqrt{169-4\left(-2\right)\left(-3\right)}}{2\left(-2\right)}
Square 13.
n=\frac{-13±\sqrt{169+8\left(-3\right)}}{2\left(-2\right)}
Multiply -4 times -2.
n=\frac{-13±\sqrt{169-24}}{2\left(-2\right)}
Multiply 8 times -3.
n=\frac{-13±\sqrt{145}}{2\left(-2\right)}
Add 169 to -24.
n=\frac{-13±\sqrt{145}}{-4}
Multiply 2 times -2.
n=\frac{\sqrt{145}-13}{-4}
Now solve the equation n=\frac{-13±\sqrt{145}}{-4} when ± is plus. Add -13 to \sqrt{145}.
n=\frac{13-\sqrt{145}}{4}
Divide -13+\sqrt{145} by -4.
n=\frac{-\sqrt{145}-13}{-4}
Now solve the equation n=\frac{-13±\sqrt{145}}{-4} when ± is minus. Subtract \sqrt{145} from -13.
n=\frac{\sqrt{145}+13}{4}
Divide -13-\sqrt{145} by -4.
n=\frac{13-\sqrt{145}}{4} n=\frac{\sqrt{145}+13}{4}
The equation is now solved.
\left(n+4\right)n=3\left(n-\left(-\frac{1}{2}\sqrt{5}+\frac{3}{2}\right)\right)\left(n-\left(\frac{1}{2}\sqrt{5}+\frac{3}{2}\right)\right)
Multiply both sides of the equation by \left(n-\left(-\frac{1}{2}\sqrt{5}+\frac{3}{2}\right)\right)\left(n-\left(\frac{1}{2}\sqrt{5}+\frac{3}{2}\right)\right).
n^{2}+4n=3\left(n-\left(-\frac{1}{2}\sqrt{5}+\frac{3}{2}\right)\right)\left(n-\left(\frac{1}{2}\sqrt{5}+\frac{3}{2}\right)\right)
Use the distributive property to multiply n+4 by n.
n^{2}+4n=3\left(n+\frac{1}{2}\sqrt{5}-\frac{3}{2}\right)\left(n-\left(\frac{1}{2}\sqrt{5}+\frac{3}{2}\right)\right)
To find the opposite of -\frac{1}{2}\sqrt{5}+\frac{3}{2}, find the opposite of each term.
n^{2}+4n=3\left(n+\frac{1}{2}\sqrt{5}-\frac{3}{2}\right)\left(n-\frac{1}{2}\sqrt{5}-\frac{3}{2}\right)
To find the opposite of \frac{1}{2}\sqrt{5}+\frac{3}{2}, find the opposite of each term.
n^{2}+4n=\left(3n+\frac{3}{2}\sqrt{5}-\frac{9}{2}\right)\left(n-\frac{1}{2}\sqrt{5}-\frac{3}{2}\right)
Use the distributive property to multiply 3 by n+\frac{1}{2}\sqrt{5}-\frac{3}{2}.
n^{2}+4n=3n^{2}-9n-\frac{3}{4}\left(\sqrt{5}\right)^{2}+\frac{27}{4}
Use the distributive property to multiply 3n+\frac{3}{2}\sqrt{5}-\frac{9}{2} by n-\frac{1}{2}\sqrt{5}-\frac{3}{2} and combine like terms.
n^{2}+4n=3n^{2}-9n-\frac{3}{4}\times 5+\frac{27}{4}
The square of \sqrt{5} is 5.
n^{2}+4n=3n^{2}-9n-\frac{15}{4}+\frac{27}{4}
Multiply -\frac{3}{4} and 5 to get -\frac{15}{4}.
n^{2}+4n=3n^{2}-9n+3
Add -\frac{15}{4} and \frac{27}{4} to get 3.
n^{2}+4n-3n^{2}=-9n+3
Subtract 3n^{2} from both sides.
-2n^{2}+4n=-9n+3
Combine n^{2} and -3n^{2} to get -2n^{2}.
-2n^{2}+4n+9n=3
Add 9n to both sides.
-2n^{2}+13n=3
Combine 4n and 9n to get 13n.
\frac{-2n^{2}+13n}{-2}=\frac{3}{-2}
Divide both sides by -2.
n^{2}+\frac{13}{-2}n=\frac{3}{-2}
Dividing by -2 undoes the multiplication by -2.
n^{2}-\frac{13}{2}n=\frac{3}{-2}
Divide 13 by -2.
n^{2}-\frac{13}{2}n=-\frac{3}{2}
Divide 3 by -2.
n^{2}-\frac{13}{2}n+\left(-\frac{13}{4}\right)^{2}=-\frac{3}{2}+\left(-\frac{13}{4}\right)^{2}
Divide -\frac{13}{2}, the coefficient of the x term, by 2 to get -\frac{13}{4}. Then add the square of -\frac{13}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-\frac{13}{2}n+\frac{169}{16}=-\frac{3}{2}+\frac{169}{16}
Square -\frac{13}{4} by squaring both the numerator and the denominator of the fraction.
n^{2}-\frac{13}{2}n+\frac{169}{16}=\frac{145}{16}
Add -\frac{3}{2} to \frac{169}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(n-\frac{13}{4}\right)^{2}=\frac{145}{16}
Factor n^{2}-\frac{13}{2}n+\frac{169}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{13}{4}\right)^{2}}=\sqrt{\frac{145}{16}}
Take the square root of both sides of the equation.
n-\frac{13}{4}=\frac{\sqrt{145}}{4} n-\frac{13}{4}=-\frac{\sqrt{145}}{4}
Simplify.
n=\frac{\sqrt{145}+13}{4} n=\frac{13-\sqrt{145}}{4}
Add \frac{13}{4} to both sides of the equation.