Solve for n
n\geq -\frac{4}{3}
Quiz
Algebra
5 problems similar to:
\frac { n + 3 } { 2 } - 1 \leq \frac { 3 n } { 4 } + \frac { 5 } { 6 }
Share
Copied to clipboard
6\left(n+3\right)-12\leq 3\times 3n+10
Multiply both sides of the equation by 12, the least common multiple of 2,4,6. Since 12 is positive, the inequality direction remains the same.
6n+18-12\leq 3\times 3n+10
Use the distributive property to multiply 6 by n+3.
6n+6\leq 3\times 3n+10
Subtract 12 from 18 to get 6.
6n+6\leq 9n+10
Multiply 3 and 3 to get 9.
6n+6-9n\leq 10
Subtract 9n from both sides.
-3n+6\leq 10
Combine 6n and -9n to get -3n.
-3n\leq 10-6
Subtract 6 from both sides.
-3n\leq 4
Subtract 6 from 10 to get 4.
n\geq -\frac{4}{3}
Divide both sides by -3. Since -3 is negative, the inequality direction is changed.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}