Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(n+2\right)\left(n+4\right)}{\left(n-2\right)\left(n+4\right)}+\frac{\left(n-4\right)\left(n-2\right)}{\left(n-2\right)\left(n+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of n-2 and n+4 is \left(n-2\right)\left(n+4\right). Multiply \frac{n+2}{n-2} times \frac{n+4}{n+4}. Multiply \frac{n-4}{n+4} times \frac{n-2}{n-2}.
\frac{\left(n+2\right)\left(n+4\right)+\left(n-4\right)\left(n-2\right)}{\left(n-2\right)\left(n+4\right)}
Since \frac{\left(n+2\right)\left(n+4\right)}{\left(n-2\right)\left(n+4\right)} and \frac{\left(n-4\right)\left(n-2\right)}{\left(n-2\right)\left(n+4\right)} have the same denominator, add them by adding their numerators.
\frac{n^{2}+4n+2n+8+n^{2}-2n-4n+8}{\left(n-2\right)\left(n+4\right)}
Do the multiplications in \left(n+2\right)\left(n+4\right)+\left(n-4\right)\left(n-2\right).
\frac{2n^{2}+16}{\left(n-2\right)\left(n+4\right)}
Combine like terms in n^{2}+4n+2n+8+n^{2}-2n-4n+8.
\frac{2n^{2}+16}{n^{2}+2n-8}
Expand \left(n-2\right)\left(n+4\right).
\frac{\left(n+2\right)\left(n+4\right)}{\left(n-2\right)\left(n+4\right)}+\frac{\left(n-4\right)\left(n-2\right)}{\left(n-2\right)\left(n+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of n-2 and n+4 is \left(n-2\right)\left(n+4\right). Multiply \frac{n+2}{n-2} times \frac{n+4}{n+4}. Multiply \frac{n-4}{n+4} times \frac{n-2}{n-2}.
\frac{\left(n+2\right)\left(n+4\right)+\left(n-4\right)\left(n-2\right)}{\left(n-2\right)\left(n+4\right)}
Since \frac{\left(n+2\right)\left(n+4\right)}{\left(n-2\right)\left(n+4\right)} and \frac{\left(n-4\right)\left(n-2\right)}{\left(n-2\right)\left(n+4\right)} have the same denominator, add them by adding their numerators.
\frac{n^{2}+4n+2n+8+n^{2}-2n-4n+8}{\left(n-2\right)\left(n+4\right)}
Do the multiplications in \left(n+2\right)\left(n+4\right)+\left(n-4\right)\left(n-2\right).
\frac{2n^{2}+16}{\left(n-2\right)\left(n+4\right)}
Combine like terms in n^{2}+4n+2n+8+n^{2}-2n-4n+8.
\frac{2n^{2}+16}{n^{2}+2n-8}
Expand \left(n-2\right)\left(n+4\right).