Solve for N
\left\{\begin{matrix}N=\frac{my-N_{x}}{p}\text{, }&\left(N_{x}\neq 0\text{ or }y\neq 0\right)\text{ and }\left(y=0\text{ or }m\neq \frac{N_{x}}{y}\right)\text{ and }\left(m\neq 0\text{ or }N_{x}\neq 0\right)\text{ and }p\neq 0\text{ and }N_{x}\neq my\\N\neq 0\text{, }&p=0\text{ and }N_{x}=my\end{matrix}\right.
Solve for N_x
N_{x}=my-Np
N\neq 0
Graph
Share
Copied to clipboard
my-N_{x}=pN
Variable N cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by N.
pN=my-N_{x}
Swap sides so that all variable terms are on the left hand side.
\frac{pN}{p}=\frac{my-N_{x}}{p}
Divide both sides by p.
N=\frac{my-N_{x}}{p}
Dividing by p undoes the multiplication by p.
N=\frac{my-N_{x}}{p}\text{, }N\neq 0
Variable N cannot be equal to 0.
my-N_{x}=pN
Multiply both sides of the equation by N.
-N_{x}=pN-my
Subtract my from both sides.
-N_{x}=Np-my
The equation is in standard form.
\frac{-N_{x}}{-1}=\frac{Np-my}{-1}
Divide both sides by -1.
N_{x}=\frac{Np-my}{-1}
Dividing by -1 undoes the multiplication by -1.
N_{x}=my-Np
Divide pN-my by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}