Solve for m
m=\frac{1354}{5\left(n+1.2\right)}
n\neq -\frac{6}{5}
Solve for n
n=-1.2+\frac{1354}{5m}
m\neq 0
Share
Copied to clipboard
mn+16\left(m+1\right)\times 0.075=272
Multiply both sides of the equation by 4.
mn+1.2\left(m+1\right)=272
Multiply 16 and 0.075 to get 1.2.
mn+1.2m+1.2=272
Use the distributive property to multiply 1.2 by m+1.
mn+1.2m=272-1.2
Subtract 1.2 from both sides.
mn+1.2m=270.8
Subtract 1.2 from 272 to get 270.8.
\left(n+1.2\right)m=270.8
Combine all terms containing m.
\frac{\left(n+1.2\right)m}{n+1.2}=\frac{270.8}{n+1.2}
Divide both sides by n+1.2.
m=\frac{270.8}{n+1.2}
Dividing by n+1.2 undoes the multiplication by n+1.2.
m=\frac{1354}{5\left(n+1.2\right)}
Divide 270.8 by n+1.2.
mn+16\left(m+1\right)\times 0.075=272
Multiply both sides of the equation by 4.
mn+1.2\left(m+1\right)=272
Multiply 16 and 0.075 to get 1.2.
mn+1.2m+1.2=272
Use the distributive property to multiply 1.2 by m+1.
mn+1.2=272-1.2m
Subtract 1.2m from both sides.
mn=272-1.2m-1.2
Subtract 1.2 from both sides.
mn=270.8-1.2m
Subtract 1.2 from 272 to get 270.8.
mn=\frac{1354-6m}{5}
The equation is in standard form.
\frac{mn}{m}=\frac{1354-6m}{5m}
Divide both sides by m.
n=\frac{1354-6m}{5m}
Dividing by m undoes the multiplication by m.
n=-\frac{6}{5}+\frac{1354}{5m}
Divide \frac{1354-6m}{5} by m.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}