Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. m
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{ma^{\frac{1}{2}}}{9nb}}{\left(\frac{3na^{3}}{b^{\frac{1}{2}}}\right)^{-2}}
Calculate n to the power of 1 and get n.
\frac{\frac{ma^{\frac{1}{2}}}{9nb}}{\frac{\left(3na^{3}\right)^{-2}}{\left(b^{\frac{1}{2}}\right)^{-2}}}
To raise \frac{3na^{3}}{b^{\frac{1}{2}}} to a power, raise both numerator and denominator to the power and then divide.
\frac{ma^{\frac{1}{2}}\left(b^{\frac{1}{2}}\right)^{-2}}{9nb\times \left(3na^{3}\right)^{-2}}
Divide \frac{ma^{\frac{1}{2}}}{9nb} by \frac{\left(3na^{3}\right)^{-2}}{\left(b^{\frac{1}{2}}\right)^{-2}} by multiplying \frac{ma^{\frac{1}{2}}}{9nb} by the reciprocal of \frac{\left(3na^{3}\right)^{-2}}{\left(b^{\frac{1}{2}}\right)^{-2}}.
\frac{ma^{\frac{1}{2}}b^{-1}}{9nb\times \left(3na^{3}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply \frac{1}{2} and -2 to get -1.
\frac{ma^{\frac{1}{2}}b^{-1}}{9nb\times 3^{-2}n^{-2}\left(a^{3}\right)^{-2}}
Expand \left(3na^{3}\right)^{-2}.
\frac{ma^{\frac{1}{2}}b^{-1}}{9nb\times 3^{-2}n^{-2}a^{-6}}
To raise a power to another power, multiply the exponents. Multiply 3 and -2 to get -6.
\frac{ma^{\frac{1}{2}}b^{-1}}{9nb\times \frac{1}{9}n^{-2}a^{-6}}
Calculate 3 to the power of -2 and get \frac{1}{9}.
\frac{ma^{\frac{1}{2}}b^{-1}}{nbn^{-2}a^{-6}}
Multiply 9 and \frac{1}{9} to get 1.
\frac{ma^{\frac{1}{2}}b^{-1}}{n^{-1}ba^{-6}}
To multiply powers of the same base, add their exponents. Add 1 and -2 to get -1.
\frac{\frac{1}{b}ma^{\frac{13}{2}}}{\frac{1}{n}b}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{ma^{\frac{13}{2}}}{\frac{1}{n}b^{2}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{ma^{\frac{13}{2}}}{\frac{b^{2}}{n}}
Express \frac{1}{n}b^{2} as a single fraction.
\frac{ma^{\frac{13}{2}}n}{b^{2}}
Divide ma^{\frac{13}{2}} by \frac{b^{2}}{n} by multiplying ma^{\frac{13}{2}} by the reciprocal of \frac{b^{2}}{n}.