Solve for m
m=\frac{5+\sqrt{3}i}{2}\approx 2.5+0.866025404i
m=\frac{-\sqrt{3}i+5}{2}\approx 2.5-0.866025404i
Share
Copied to clipboard
\frac{m-4}{-1}\times \frac{m-1}{0-3}=-1
Subtract 1 from 0 to get -1.
\left(-m-\left(-4\right)\right)\times \frac{m-1}{0-3}=-1
Anything divided by -1 gives its opposite. To find the opposite of m-4, find the opposite of each term.
\left(-m-\left(-4\right)\right)\times \frac{m-1}{-3}=-1
Subtract 3 from 0 to get -3.
\left(-m-\left(-4\right)\right)\times \frac{-m+1}{3}=-1
Multiply both numerator and denominator by -1.
\frac{\left(-m-\left(-4\right)\right)\left(-m+1\right)}{3}=-1
Express \left(-m-\left(-4\right)\right)\times \frac{-m+1}{3} as a single fraction.
\frac{\left(-m+4\right)\left(-m+1\right)}{3}=-1
The opposite of -4 is 4.
\frac{\left(-m+4\right)\left(-m+1\right)}{3}+1=0
Add 1 to both sides.
\frac{m^{2}-m-4m+4}{3}+1=0
Apply the distributive property by multiplying each term of -m+4 by each term of -m+1.
\frac{m^{2}-5m+4}{3}+1=0
Combine -m and -4m to get -5m.
\frac{1}{3}m^{2}-\frac{5}{3}m+\frac{4}{3}+1=0
Divide each term of m^{2}-5m+4 by 3 to get \frac{1}{3}m^{2}-\frac{5}{3}m+\frac{4}{3}.
\frac{1}{3}m^{2}-\frac{5}{3}m+\frac{4}{3}+\frac{3}{3}=0
Convert 1 to fraction \frac{3}{3}.
\frac{1}{3}m^{2}-\frac{5}{3}m+\frac{4+3}{3}=0
Since \frac{4}{3} and \frac{3}{3} have the same denominator, add them by adding their numerators.
\frac{1}{3}m^{2}-\frac{5}{3}m+\frac{7}{3}=0
Add 4 and 3 to get 7.
m=\frac{-\left(-\frac{5}{3}\right)±\sqrt{\left(-\frac{5}{3}\right)^{2}-4\times \frac{1}{3}\times \frac{7}{3}}}{2\times \frac{1}{3}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{3} for a, -\frac{5}{3} for b, and \frac{7}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-\frac{5}{3}\right)±\sqrt{\frac{25}{9}-4\times \frac{1}{3}\times \frac{7}{3}}}{2\times \frac{1}{3}}
Square -\frac{5}{3} by squaring both the numerator and the denominator of the fraction.
m=\frac{-\left(-\frac{5}{3}\right)±\sqrt{\frac{25}{9}-\frac{4}{3}\times \frac{7}{3}}}{2\times \frac{1}{3}}
Multiply -4 times \frac{1}{3}.
m=\frac{-\left(-\frac{5}{3}\right)±\sqrt{\frac{25-28}{9}}}{2\times \frac{1}{3}}
Multiply -\frac{4}{3} times \frac{7}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
m=\frac{-\left(-\frac{5}{3}\right)±\sqrt{-\frac{1}{3}}}{2\times \frac{1}{3}}
Add \frac{25}{9} to -\frac{28}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
m=\frac{-\left(-\frac{5}{3}\right)±\frac{\sqrt{3}i}{3}}{2\times \frac{1}{3}}
Take the square root of -\frac{1}{3}.
m=\frac{\frac{5}{3}±\frac{\sqrt{3}i}{3}}{2\times \frac{1}{3}}
The opposite of -\frac{5}{3} is \frac{5}{3}.
m=\frac{\frac{5}{3}±\frac{\sqrt{3}i}{3}}{\frac{2}{3}}
Multiply 2 times \frac{1}{3}.
m=\frac{5+\sqrt{3}i}{\frac{2}{3}\times 3}
Now solve the equation m=\frac{\frac{5}{3}±\frac{\sqrt{3}i}{3}}{\frac{2}{3}} when ± is plus. Add \frac{5}{3} to \frac{i\sqrt{3}}{3}.
m=\frac{5+\sqrt{3}i}{2}
Divide \frac{5+i\sqrt{3}}{3} by \frac{2}{3} by multiplying \frac{5+i\sqrt{3}}{3} by the reciprocal of \frac{2}{3}.
m=\frac{-\sqrt{3}i+5}{\frac{2}{3}\times 3}
Now solve the equation m=\frac{\frac{5}{3}±\frac{\sqrt{3}i}{3}}{\frac{2}{3}} when ± is minus. Subtract \frac{i\sqrt{3}}{3} from \frac{5}{3}.
m=\frac{-\sqrt{3}i+5}{2}
Divide \frac{5-i\sqrt{3}}{3} by \frac{2}{3} by multiplying \frac{5-i\sqrt{3}}{3} by the reciprocal of \frac{2}{3}.
m=\frac{5+\sqrt{3}i}{2} m=\frac{-\sqrt{3}i+5}{2}
The equation is now solved.
\frac{m-4}{-1}\times \frac{m-1}{0-3}=-1
Subtract 1 from 0 to get -1.
\left(-m-\left(-4\right)\right)\times \frac{m-1}{0-3}=-1
Anything divided by -1 gives its opposite. To find the opposite of m-4, find the opposite of each term.
\left(-m-\left(-4\right)\right)\times \frac{m-1}{-3}=-1
Subtract 3 from 0 to get -3.
\left(-m-\left(-4\right)\right)\times \frac{-m+1}{3}=-1
Multiply both numerator and denominator by -1.
\frac{\left(-m-\left(-4\right)\right)\left(-m+1\right)}{3}=-1
Express \left(-m-\left(-4\right)\right)\times \frac{-m+1}{3} as a single fraction.
\frac{\left(-m+4\right)\left(-m+1\right)}{3}=-1
The opposite of -4 is 4.
\left(-m+4\right)\left(-m+1\right)=-3
Multiply both sides by 3.
m^{2}-m-4m+4=-3
Apply the distributive property by multiplying each term of -m+4 by each term of -m+1.
m^{2}-5m+4=-3
Combine -m and -4m to get -5m.
m^{2}-5m=-3-4
Subtract 4 from both sides.
m^{2}-5m=-7
Subtract 4 from -3 to get -7.
m^{2}-5m+\left(-\frac{5}{2}\right)^{2}=-7+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-5m+\frac{25}{4}=-7+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
m^{2}-5m+\frac{25}{4}=-\frac{3}{4}
Add -7 to \frac{25}{4}.
\left(m-\frac{5}{2}\right)^{2}=-\frac{3}{4}
Factor m^{2}-5m+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-\frac{5}{2}\right)^{2}}=\sqrt{-\frac{3}{4}}
Take the square root of both sides of the equation.
m-\frac{5}{2}=\frac{\sqrt{3}i}{2} m-\frac{5}{2}=-\frac{\sqrt{3}i}{2}
Simplify.
m=\frac{5+\sqrt{3}i}{2} m=\frac{-\sqrt{3}i+5}{2}
Add \frac{5}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}