Evaluate
\frac{m+5}{m-2}
Expand
\frac{m+5}{m-2}
Share
Copied to clipboard
\frac{\frac{m-2}{m-5}}{\frac{m^{2}+24}{\left(m-5\right)\left(m+5\right)}-\frac{4}{m-5}}
Factor m^{2}-25.
\frac{\frac{m-2}{m-5}}{\frac{m^{2}+24}{\left(m-5\right)\left(m+5\right)}-\frac{4\left(m+5\right)}{\left(m-5\right)\left(m+5\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(m-5\right)\left(m+5\right) and m-5 is \left(m-5\right)\left(m+5\right). Multiply \frac{4}{m-5} times \frac{m+5}{m+5}.
\frac{\frac{m-2}{m-5}}{\frac{m^{2}+24-4\left(m+5\right)}{\left(m-5\right)\left(m+5\right)}}
Since \frac{m^{2}+24}{\left(m-5\right)\left(m+5\right)} and \frac{4\left(m+5\right)}{\left(m-5\right)\left(m+5\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{m-2}{m-5}}{\frac{m^{2}+24-4m-20}{\left(m-5\right)\left(m+5\right)}}
Do the multiplications in m^{2}+24-4\left(m+5\right).
\frac{\frac{m-2}{m-5}}{\frac{m^{2}+4-4m}{\left(m-5\right)\left(m+5\right)}}
Combine like terms in m^{2}+24-4m-20.
\frac{\left(m-2\right)\left(m-5\right)\left(m+5\right)}{\left(m-5\right)\left(m^{2}+4-4m\right)}
Divide \frac{m-2}{m-5} by \frac{m^{2}+4-4m}{\left(m-5\right)\left(m+5\right)} by multiplying \frac{m-2}{m-5} by the reciprocal of \frac{m^{2}+4-4m}{\left(m-5\right)\left(m+5\right)}.
\frac{\left(m-2\right)\left(m+5\right)}{m^{2}-4m+4}
Cancel out m-5 in both numerator and denominator.
\frac{\left(m-2\right)\left(m+5\right)}{\left(m-2\right)^{2}}
Factor the expressions that are not already factored.
\frac{m+5}{m-2}
Cancel out m-2 in both numerator and denominator.
\frac{\frac{m-2}{m-5}}{\frac{m^{2}+24}{\left(m-5\right)\left(m+5\right)}-\frac{4}{m-5}}
Factor m^{2}-25.
\frac{\frac{m-2}{m-5}}{\frac{m^{2}+24}{\left(m-5\right)\left(m+5\right)}-\frac{4\left(m+5\right)}{\left(m-5\right)\left(m+5\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(m-5\right)\left(m+5\right) and m-5 is \left(m-5\right)\left(m+5\right). Multiply \frac{4}{m-5} times \frac{m+5}{m+5}.
\frac{\frac{m-2}{m-5}}{\frac{m^{2}+24-4\left(m+5\right)}{\left(m-5\right)\left(m+5\right)}}
Since \frac{m^{2}+24}{\left(m-5\right)\left(m+5\right)} and \frac{4\left(m+5\right)}{\left(m-5\right)\left(m+5\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{m-2}{m-5}}{\frac{m^{2}+24-4m-20}{\left(m-5\right)\left(m+5\right)}}
Do the multiplications in m^{2}+24-4\left(m+5\right).
\frac{\frac{m-2}{m-5}}{\frac{m^{2}+4-4m}{\left(m-5\right)\left(m+5\right)}}
Combine like terms in m^{2}+24-4m-20.
\frac{\left(m-2\right)\left(m-5\right)\left(m+5\right)}{\left(m-5\right)\left(m^{2}+4-4m\right)}
Divide \frac{m-2}{m-5} by \frac{m^{2}+4-4m}{\left(m-5\right)\left(m+5\right)} by multiplying \frac{m-2}{m-5} by the reciprocal of \frac{m^{2}+4-4m}{\left(m-5\right)\left(m+5\right)}.
\frac{\left(m-2\right)\left(m+5\right)}{m^{2}-4m+4}
Cancel out m-5 in both numerator and denominator.
\frac{\left(m-2\right)\left(m+5\right)}{\left(m-2\right)^{2}}
Factor the expressions that are not already factored.
\frac{m+5}{m-2}
Cancel out m-2 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}