Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{m-2}{m-5}}{\frac{m^{2}+24}{\left(m-5\right)\left(m+5\right)}-\frac{4}{m-5}}
Factor m^{2}-25.
\frac{\frac{m-2}{m-5}}{\frac{m^{2}+24}{\left(m-5\right)\left(m+5\right)}-\frac{4\left(m+5\right)}{\left(m-5\right)\left(m+5\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(m-5\right)\left(m+5\right) and m-5 is \left(m-5\right)\left(m+5\right). Multiply \frac{4}{m-5} times \frac{m+5}{m+5}.
\frac{\frac{m-2}{m-5}}{\frac{m^{2}+24-4\left(m+5\right)}{\left(m-5\right)\left(m+5\right)}}
Since \frac{m^{2}+24}{\left(m-5\right)\left(m+5\right)} and \frac{4\left(m+5\right)}{\left(m-5\right)\left(m+5\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{m-2}{m-5}}{\frac{m^{2}+24-4m-20}{\left(m-5\right)\left(m+5\right)}}
Do the multiplications in m^{2}+24-4\left(m+5\right).
\frac{\frac{m-2}{m-5}}{\frac{m^{2}+4-4m}{\left(m-5\right)\left(m+5\right)}}
Combine like terms in m^{2}+24-4m-20.
\frac{\left(m-2\right)\left(m-5\right)\left(m+5\right)}{\left(m-5\right)\left(m^{2}+4-4m\right)}
Divide \frac{m-2}{m-5} by \frac{m^{2}+4-4m}{\left(m-5\right)\left(m+5\right)} by multiplying \frac{m-2}{m-5} by the reciprocal of \frac{m^{2}+4-4m}{\left(m-5\right)\left(m+5\right)}.
\frac{\left(m-2\right)\left(m+5\right)}{m^{2}-4m+4}
Cancel out m-5 in both numerator and denominator.
\frac{\left(m-2\right)\left(m+5\right)}{\left(m-2\right)^{2}}
Factor the expressions that are not already factored.
\frac{m+5}{m-2}
Cancel out m-2 in both numerator and denominator.
\frac{\frac{m-2}{m-5}}{\frac{m^{2}+24}{\left(m-5\right)\left(m+5\right)}-\frac{4}{m-5}}
Factor m^{2}-25.
\frac{\frac{m-2}{m-5}}{\frac{m^{2}+24}{\left(m-5\right)\left(m+5\right)}-\frac{4\left(m+5\right)}{\left(m-5\right)\left(m+5\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(m-5\right)\left(m+5\right) and m-5 is \left(m-5\right)\left(m+5\right). Multiply \frac{4}{m-5} times \frac{m+5}{m+5}.
\frac{\frac{m-2}{m-5}}{\frac{m^{2}+24-4\left(m+5\right)}{\left(m-5\right)\left(m+5\right)}}
Since \frac{m^{2}+24}{\left(m-5\right)\left(m+5\right)} and \frac{4\left(m+5\right)}{\left(m-5\right)\left(m+5\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{m-2}{m-5}}{\frac{m^{2}+24-4m-20}{\left(m-5\right)\left(m+5\right)}}
Do the multiplications in m^{2}+24-4\left(m+5\right).
\frac{\frac{m-2}{m-5}}{\frac{m^{2}+4-4m}{\left(m-5\right)\left(m+5\right)}}
Combine like terms in m^{2}+24-4m-20.
\frac{\left(m-2\right)\left(m-5\right)\left(m+5\right)}{\left(m-5\right)\left(m^{2}+4-4m\right)}
Divide \frac{m-2}{m-5} by \frac{m^{2}+4-4m}{\left(m-5\right)\left(m+5\right)} by multiplying \frac{m-2}{m-5} by the reciprocal of \frac{m^{2}+4-4m}{\left(m-5\right)\left(m+5\right)}.
\frac{\left(m-2\right)\left(m+5\right)}{m^{2}-4m+4}
Cancel out m-5 in both numerator and denominator.
\frac{\left(m-2\right)\left(m+5\right)}{\left(m-2\right)^{2}}
Factor the expressions that are not already factored.
\frac{m+5}{m-2}
Cancel out m-2 in both numerator and denominator.