Solve for m
m=\frac{3n+19}{5}
Solve for n
n=\frac{5m-19}{3}
Share
Copied to clipboard
5\left(m-2\right)=3\left(3+n\right)
Multiply both sides of the equation by 15, the least common multiple of 3,5.
5m-10=3\left(3+n\right)
Use the distributive property to multiply 5 by m-2.
5m-10=9+3n
Use the distributive property to multiply 3 by 3+n.
5m=9+3n+10
Add 10 to both sides.
5m=19+3n
Add 9 and 10 to get 19.
5m=3n+19
The equation is in standard form.
\frac{5m}{5}=\frac{3n+19}{5}
Divide both sides by 5.
m=\frac{3n+19}{5}
Dividing by 5 undoes the multiplication by 5.
5\left(m-2\right)=3\left(3+n\right)
Multiply both sides of the equation by 15, the least common multiple of 3,5.
5m-10=3\left(3+n\right)
Use the distributive property to multiply 5 by m-2.
5m-10=9+3n
Use the distributive property to multiply 3 by 3+n.
9+3n=5m-10
Swap sides so that all variable terms are on the left hand side.
3n=5m-10-9
Subtract 9 from both sides.
3n=5m-19
Subtract 9 from -10 to get -19.
\frac{3n}{3}=\frac{5m-19}{3}
Divide both sides by 3.
n=\frac{5m-19}{3}
Dividing by 3 undoes the multiplication by 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}