Solve for m
m=-5
Share
Copied to clipboard
7\left(m-10\right)-3\left(6m-19\right)=42
Multiply both sides of the equation by 21, the least common multiple of 3,7.
7m-70-3\left(6m-19\right)=42
Use the distributive property to multiply 7 by m-10.
7m-70-18m+57=42
Use the distributive property to multiply -3 by 6m-19.
-11m-70+57=42
Combine 7m and -18m to get -11m.
-11m-13=42
Add -70 and 57 to get -13.
-11m=42+13
Add 13 to both sides.
-11m=55
Add 42 and 13 to get 55.
m=\frac{55}{-11}
Divide both sides by -11.
m=-5
Divide 55 by -11 to get -5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}