Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{m-1}{m+1}-\frac{m-m^{3}}{n}\times \frac{n}{\left(m+1\right)^{2}}
Use the distributive property to multiply m by 1-m^{2}.
\frac{m-1}{m+1}-\frac{\left(m-m^{3}\right)n}{n\left(m+1\right)^{2}}
Multiply \frac{m-m^{3}}{n} times \frac{n}{\left(m+1\right)^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{m-1}{m+1}-\frac{-m^{3}+m}{\left(m+1\right)^{2}}
Cancel out n in both numerator and denominator.
\frac{\left(m-1\right)\left(m+1\right)}{\left(m+1\right)^{2}}-\frac{-m^{3}+m}{\left(m+1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m+1 and \left(m+1\right)^{2} is \left(m+1\right)^{2}. Multiply \frac{m-1}{m+1} times \frac{m+1}{m+1}.
\frac{\left(m-1\right)\left(m+1\right)-\left(-m^{3}+m\right)}{\left(m+1\right)^{2}}
Since \frac{\left(m-1\right)\left(m+1\right)}{\left(m+1\right)^{2}} and \frac{-m^{3}+m}{\left(m+1\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{m^{2}+m-m-1+m^{3}-m}{\left(m+1\right)^{2}}
Do the multiplications in \left(m-1\right)\left(m+1\right)-\left(-m^{3}+m\right).
\frac{m^{2}-m-1+m^{3}}{\left(m+1\right)^{2}}
Combine like terms in m^{2}+m-m-1+m^{3}-m.
\frac{\left(m-1\right)\left(m+1\right)^{2}}{\left(m+1\right)^{2}}
Factor the expressions that are not already factored in \frac{m^{2}-m-1+m^{3}}{\left(m+1\right)^{2}}.
m-1
Cancel out \left(m+1\right)^{2} in both numerator and denominator.
\frac{m-1}{m+1}-\frac{m-m^{3}}{n}\times \frac{n}{\left(m+1\right)^{2}}
Use the distributive property to multiply m by 1-m^{2}.
\frac{m-1}{m+1}-\frac{\left(m-m^{3}\right)n}{n\left(m+1\right)^{2}}
Multiply \frac{m-m^{3}}{n} times \frac{n}{\left(m+1\right)^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{m-1}{m+1}-\frac{-m^{3}+m}{\left(m+1\right)^{2}}
Cancel out n in both numerator and denominator.
\frac{\left(m-1\right)\left(m+1\right)}{\left(m+1\right)^{2}}-\frac{-m^{3}+m}{\left(m+1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m+1 and \left(m+1\right)^{2} is \left(m+1\right)^{2}. Multiply \frac{m-1}{m+1} times \frac{m+1}{m+1}.
\frac{\left(m-1\right)\left(m+1\right)-\left(-m^{3}+m\right)}{\left(m+1\right)^{2}}
Since \frac{\left(m-1\right)\left(m+1\right)}{\left(m+1\right)^{2}} and \frac{-m^{3}+m}{\left(m+1\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{m^{2}+m-m-1+m^{3}-m}{\left(m+1\right)^{2}}
Do the multiplications in \left(m-1\right)\left(m+1\right)-\left(-m^{3}+m\right).
\frac{m^{2}-m-1+m^{3}}{\left(m+1\right)^{2}}
Combine like terms in m^{2}+m-m-1+m^{3}-m.
\frac{\left(m-1\right)\left(m+1\right)^{2}}{\left(m+1\right)^{2}}
Factor the expressions that are not already factored in \frac{m^{2}-m-1+m^{3}}{\left(m+1\right)^{2}}.
m-1
Cancel out \left(m+1\right)^{2} in both numerator and denominator.