Evaluate
m-1
Expand
m-1
Share
Copied to clipboard
\frac{m-1}{m+1}-\frac{m-m^{3}}{n}\times \frac{n}{\left(m+1\right)^{2}}
Use the distributive property to multiply m by 1-m^{2}.
\frac{m-1}{m+1}-\frac{\left(m-m^{3}\right)n}{n\left(m+1\right)^{2}}
Multiply \frac{m-m^{3}}{n} times \frac{n}{\left(m+1\right)^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{m-1}{m+1}-\frac{-m^{3}+m}{\left(m+1\right)^{2}}
Cancel out n in both numerator and denominator.
\frac{\left(m-1\right)\left(m+1\right)}{\left(m+1\right)^{2}}-\frac{-m^{3}+m}{\left(m+1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m+1 and \left(m+1\right)^{2} is \left(m+1\right)^{2}. Multiply \frac{m-1}{m+1} times \frac{m+1}{m+1}.
\frac{\left(m-1\right)\left(m+1\right)-\left(-m^{3}+m\right)}{\left(m+1\right)^{2}}
Since \frac{\left(m-1\right)\left(m+1\right)}{\left(m+1\right)^{2}} and \frac{-m^{3}+m}{\left(m+1\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{m^{2}+m-m-1+m^{3}-m}{\left(m+1\right)^{2}}
Do the multiplications in \left(m-1\right)\left(m+1\right)-\left(-m^{3}+m\right).
\frac{m^{2}-m-1+m^{3}}{\left(m+1\right)^{2}}
Combine like terms in m^{2}+m-m-1+m^{3}-m.
\frac{\left(m-1\right)\left(m+1\right)^{2}}{\left(m+1\right)^{2}}
Factor the expressions that are not already factored in \frac{m^{2}-m-1+m^{3}}{\left(m+1\right)^{2}}.
m-1
Cancel out \left(m+1\right)^{2} in both numerator and denominator.
\frac{m-1}{m+1}-\frac{m-m^{3}}{n}\times \frac{n}{\left(m+1\right)^{2}}
Use the distributive property to multiply m by 1-m^{2}.
\frac{m-1}{m+1}-\frac{\left(m-m^{3}\right)n}{n\left(m+1\right)^{2}}
Multiply \frac{m-m^{3}}{n} times \frac{n}{\left(m+1\right)^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{m-1}{m+1}-\frac{-m^{3}+m}{\left(m+1\right)^{2}}
Cancel out n in both numerator and denominator.
\frac{\left(m-1\right)\left(m+1\right)}{\left(m+1\right)^{2}}-\frac{-m^{3}+m}{\left(m+1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m+1 and \left(m+1\right)^{2} is \left(m+1\right)^{2}. Multiply \frac{m-1}{m+1} times \frac{m+1}{m+1}.
\frac{\left(m-1\right)\left(m+1\right)-\left(-m^{3}+m\right)}{\left(m+1\right)^{2}}
Since \frac{\left(m-1\right)\left(m+1\right)}{\left(m+1\right)^{2}} and \frac{-m^{3}+m}{\left(m+1\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{m^{2}+m-m-1+m^{3}-m}{\left(m+1\right)^{2}}
Do the multiplications in \left(m-1\right)\left(m+1\right)-\left(-m^{3}+m\right).
\frac{m^{2}-m-1+m^{3}}{\left(m+1\right)^{2}}
Combine like terms in m^{2}+m-m-1+m^{3}-m.
\frac{\left(m-1\right)\left(m+1\right)^{2}}{\left(m+1\right)^{2}}
Factor the expressions that are not already factored in \frac{m^{2}-m-1+m^{3}}{\left(m+1\right)^{2}}.
m-1
Cancel out \left(m+1\right)^{2} in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}