Solve for m
m=0
Share
Copied to clipboard
\left(m-1\right)\left(m-1\right)-\left(m+1\right)\times 2m=-\left(m-1\right)\left(m+1\right)
Variable m cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by \left(m-1\right)\left(m+1\right), the least common multiple of m+1,m-1.
\left(m-1\right)^{2}-\left(m+1\right)\times 2m=-\left(m-1\right)\left(m+1\right)
Multiply m-1 and m-1 to get \left(m-1\right)^{2}.
m^{2}-2m+1-\left(m+1\right)\times 2m=-\left(m-1\right)\left(m+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(m-1\right)^{2}.
m^{2}-2m+1-\left(2m+2\right)m=-\left(m-1\right)\left(m+1\right)
Use the distributive property to multiply m+1 by 2.
m^{2}-2m+1-\left(2m^{2}+2m\right)=-\left(m-1\right)\left(m+1\right)
Use the distributive property to multiply 2m+2 by m.
m^{2}-2m+1-2m^{2}-2m=-\left(m-1\right)\left(m+1\right)
To find the opposite of 2m^{2}+2m, find the opposite of each term.
-m^{2}-2m+1-2m=-\left(m-1\right)\left(m+1\right)
Combine m^{2} and -2m^{2} to get -m^{2}.
-m^{2}-4m+1=-\left(m-1\right)\left(m+1\right)
Combine -2m and -2m to get -4m.
-m^{2}-4m+1=\left(-m+1\right)\left(m+1\right)
Use the distributive property to multiply -1 by m-1.
-m^{2}-4m+1=-m^{2}+1
Use the distributive property to multiply -m+1 by m+1 and combine like terms.
-m^{2}-4m+1+m^{2}=1
Add m^{2} to both sides.
-4m+1=1
Combine -m^{2} and m^{2} to get 0.
-4m=1-1
Subtract 1 from both sides.
-4m=0
Subtract 1 from 1 to get 0.
m=0
Product of two numbers is equal to 0 if at least one of them is 0. Since -4 is not equal to 0, m must be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}