Solve for m
m = -\frac{96}{19} = -5\frac{1}{19} \approx -5.052631579
Share
Copied to clipboard
6\left(m-1\right)-15m=10\left(m+9\right)
Multiply both sides of the equation by 30, the least common multiple of 5,2,3.
6m-6-15m=10\left(m+9\right)
Use the distributive property to multiply 6 by m-1.
-9m-6=10\left(m+9\right)
Combine 6m and -15m to get -9m.
-9m-6=10m+90
Use the distributive property to multiply 10 by m+9.
-9m-6-10m=90
Subtract 10m from both sides.
-19m-6=90
Combine -9m and -10m to get -19m.
-19m=90+6
Add 6 to both sides.
-19m=96
Add 90 and 6 to get 96.
m=\frac{96}{-19}
Divide both sides by -19.
m=-\frac{96}{19}
Fraction \frac{96}{-19} can be rewritten as -\frac{96}{19} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}