Skip to main content
Solve for m
Tick mark Image

Similar Problems from Web Search

Share

2m\left(m+2\right)=m-1
Variable m cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by 2\left(m-1\right), the least common multiple of m-1,2.
2m^{2}+4m=m-1
Use the distributive property to multiply 2m by m+2.
2m^{2}+4m-m=-1
Subtract m from both sides.
2m^{2}+3m=-1
Combine 4m and -m to get 3m.
2m^{2}+3m+1=0
Add 1 to both sides.
m=\frac{-3±\sqrt{3^{2}-4\times 2}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 3 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-3±\sqrt{9-4\times 2}}{2\times 2}
Square 3.
m=\frac{-3±\sqrt{9-8}}{2\times 2}
Multiply -4 times 2.
m=\frac{-3±\sqrt{1}}{2\times 2}
Add 9 to -8.
m=\frac{-3±1}{2\times 2}
Take the square root of 1.
m=\frac{-3±1}{4}
Multiply 2 times 2.
m=-\frac{2}{4}
Now solve the equation m=\frac{-3±1}{4} when ± is plus. Add -3 to 1.
m=-\frac{1}{2}
Reduce the fraction \frac{-2}{4} to lowest terms by extracting and canceling out 2.
m=-\frac{4}{4}
Now solve the equation m=\frac{-3±1}{4} when ± is minus. Subtract 1 from -3.
m=-1
Divide -4 by 4.
m=-\frac{1}{2} m=-1
The equation is now solved.
2m\left(m+2\right)=m-1
Variable m cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by 2\left(m-1\right), the least common multiple of m-1,2.
2m^{2}+4m=m-1
Use the distributive property to multiply 2m by m+2.
2m^{2}+4m-m=-1
Subtract m from both sides.
2m^{2}+3m=-1
Combine 4m and -m to get 3m.
\frac{2m^{2}+3m}{2}=-\frac{1}{2}
Divide both sides by 2.
m^{2}+\frac{3}{2}m=-\frac{1}{2}
Dividing by 2 undoes the multiplication by 2.
m^{2}+\frac{3}{2}m+\left(\frac{3}{4}\right)^{2}=-\frac{1}{2}+\left(\frac{3}{4}\right)^{2}
Divide \frac{3}{2}, the coefficient of the x term, by 2 to get \frac{3}{4}. Then add the square of \frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}+\frac{3}{2}m+\frac{9}{16}=-\frac{1}{2}+\frac{9}{16}
Square \frac{3}{4} by squaring both the numerator and the denominator of the fraction.
m^{2}+\frac{3}{2}m+\frac{9}{16}=\frac{1}{16}
Add -\frac{1}{2} to \frac{9}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(m+\frac{3}{4}\right)^{2}=\frac{1}{16}
Factor m^{2}+\frac{3}{2}m+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m+\frac{3}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
Take the square root of both sides of the equation.
m+\frac{3}{4}=\frac{1}{4} m+\frac{3}{4}=-\frac{1}{4}
Simplify.
m=-\frac{1}{2} m=-1
Subtract \frac{3}{4} from both sides of the equation.