Solve for m
m=-\left(x+2\right)
x\neq 2
Solve for x
x=-\left(m+2\right)
m\neq -4
Graph
Share
Copied to clipboard
m+2x=x-2
Multiply both sides of the equation by x-2, the least common multiple of x-2,2-x.
m=x-2-2x
Subtract 2x from both sides.
m=-x-2
Combine x and -2x to get -x.
m+2x=x-2
Variable x cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by x-2, the least common multiple of x-2,2-x.
m+2x-x=-2
Subtract x from both sides.
m+x=-2
Combine 2x and -x to get x.
x=-2-m
Subtract m from both sides.
x=-2-m\text{, }x\neq 2
Variable x cannot be equal to 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}