Solve for m
m=x+2
x\neq 1
Solve for x
x=m-2
m\neq 3
Graph
Share
Copied to clipboard
m-3=x-1
Multiply both sides of the equation by x-1, the least common multiple of x-1,1-x.
m=x-1+3
Add 3 to both sides.
m=x+2
Add -1 and 3 to get 2.
m-3=x-1
Variable x cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by x-1, the least common multiple of x-1,1-x.
x-1=m-3
Swap sides so that all variable terms are on the left hand side.
x=m-3+1
Add 1 to both sides.
x=m-2
Add -3 and 1 to get -2.
x=m-2\text{, }x\neq 1
Variable x cannot be equal to 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}