Solve for x
x=\frac{m^{2}}{3}
m\neq 0
Solve for m (complex solution)
m=-\sqrt{3x}
m=\sqrt{3x}\text{, }x\neq 0
Solve for m
m=\sqrt{3x}
m=-\sqrt{3x}\text{, }x>0
Graph
Share
Copied to clipboard
mm-x=x\times 2
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by mx, the least common multiple of x,m.
m^{2}-x=x\times 2
Multiply m and m to get m^{2}.
m^{2}-x-x\times 2=0
Subtract x\times 2 from both sides.
m^{2}-x-2x=0
Multiply -1 and 2 to get -2.
m^{2}-3x=0
Combine -x and -2x to get -3x.
-3x=-m^{2}
Subtract m^{2} from both sides. Anything subtracted from zero gives its negation.
\frac{-3x}{-3}=-\frac{m^{2}}{-3}
Divide both sides by -3.
x=-\frac{m^{2}}{-3}
Dividing by -3 undoes the multiplication by -3.
x=\frac{m^{2}}{3}
Divide -m^{2} by -3.
x=\frac{m^{2}}{3}\text{, }x\neq 0
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}