Solve for n
n=-\frac{m^{2}-8m+36}{4-m}
m\neq -1\text{ and }m\neq 0\text{ and }m\neq 4
Solve for m
m=\frac{\sqrt{n^{2}-80}+n+8}{2}
m=\frac{-\sqrt{n^{2}-80}+n+8}{2}\text{, }n\geq 4\sqrt{5}\text{ or }\left(n\neq -9\text{ and }n\leq -4\sqrt{5}\right)
Share
Copied to clipboard
\left(m+1\right)m=\left(n+9\right)\left(m-4\right)
Variable n cannot be equal to -9 since division by zero is not defined. Multiply both sides of the equation by \left(m+1\right)\left(n+9\right), the least common multiple of n+9,m+1.
m^{2}+m=\left(n+9\right)\left(m-4\right)
Use the distributive property to multiply m+1 by m.
m^{2}+m=nm-4n+9m-36
Use the distributive property to multiply n+9 by m-4.
nm-4n+9m-36=m^{2}+m
Swap sides so that all variable terms are on the left hand side.
nm-4n-36=m^{2}+m-9m
Subtract 9m from both sides.
nm-4n-36=m^{2}-8m
Combine m and -9m to get -8m.
nm-4n=m^{2}-8m+36
Add 36 to both sides.
\left(m-4\right)n=m^{2}-8m+36
Combine all terms containing n.
\frac{\left(m-4\right)n}{m-4}=\frac{m^{2}-8m+36}{m-4}
Divide both sides by m-4.
n=\frac{m^{2}-8m+36}{m-4}
Dividing by m-4 undoes the multiplication by m-4.
n=\frac{m^{2}-8m+36}{m-4}\text{, }n\neq -9
Variable n cannot be equal to -9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}