Evaluate
\frac{mx-m-2}{m-1}
Expand
\frac{mx-m-2}{m-1}
Share
Copied to clipboard
\frac{m}{m-1}\left(\frac{\left(x-1\right)m^{2}}{m^{2}}-\frac{2}{m^{2}}\right)-\frac{2}{m}
To add or subtract expressions, expand them to make their denominators the same. Multiply x-1 times \frac{m^{2}}{m^{2}}.
\frac{m}{m-1}\times \frac{\left(x-1\right)m^{2}-2}{m^{2}}-\frac{2}{m}
Since \frac{\left(x-1\right)m^{2}}{m^{2}} and \frac{2}{m^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{m}{m-1}\times \frac{xm^{2}-m^{2}-2}{m^{2}}-\frac{2}{m}
Do the multiplications in \left(x-1\right)m^{2}-2.
\frac{m\left(xm^{2}-m^{2}-2\right)}{\left(m-1\right)m^{2}}-\frac{2}{m}
Multiply \frac{m}{m-1} times \frac{xm^{2}-m^{2}-2}{m^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{xm^{2}-m^{2}-2}{m\left(m-1\right)}-\frac{2}{m}
Cancel out m in both numerator and denominator.
\frac{xm^{2}-m^{2}-2}{m\left(m-1\right)}-\frac{2\left(m-1\right)}{m\left(m-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m\left(m-1\right) and m is m\left(m-1\right). Multiply \frac{2}{m} times \frac{m-1}{m-1}.
\frac{xm^{2}-m^{2}-2-2\left(m-1\right)}{m\left(m-1\right)}
Since \frac{xm^{2}-m^{2}-2}{m\left(m-1\right)} and \frac{2\left(m-1\right)}{m\left(m-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{xm^{2}-m^{2}-2-2m+2}{m\left(m-1\right)}
Do the multiplications in xm^{2}-m^{2}-2-2\left(m-1\right).
\frac{xm^{2}-m^{2}-2m}{m\left(m-1\right)}
Combine like terms in xm^{2}-m^{2}-2-2m+2.
\frac{m\left(mx-m-2\right)}{m\left(m-1\right)}
Factor the expressions that are not already factored in \frac{xm^{2}-m^{2}-2m}{m\left(m-1\right)}.
\frac{mx-m-2}{m-1}
Cancel out m in both numerator and denominator.
\frac{m}{m-1}\left(\frac{\left(x-1\right)m^{2}}{m^{2}}-\frac{2}{m^{2}}\right)-\frac{2}{m}
To add or subtract expressions, expand them to make their denominators the same. Multiply x-1 times \frac{m^{2}}{m^{2}}.
\frac{m}{m-1}\times \frac{\left(x-1\right)m^{2}-2}{m^{2}}-\frac{2}{m}
Since \frac{\left(x-1\right)m^{2}}{m^{2}} and \frac{2}{m^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{m}{m-1}\times \frac{xm^{2}-m^{2}-2}{m^{2}}-\frac{2}{m}
Do the multiplications in \left(x-1\right)m^{2}-2.
\frac{m\left(xm^{2}-m^{2}-2\right)}{\left(m-1\right)m^{2}}-\frac{2}{m}
Multiply \frac{m}{m-1} times \frac{xm^{2}-m^{2}-2}{m^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{xm^{2}-m^{2}-2}{m\left(m-1\right)}-\frac{2}{m}
Cancel out m in both numerator and denominator.
\frac{xm^{2}-m^{2}-2}{m\left(m-1\right)}-\frac{2\left(m-1\right)}{m\left(m-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m\left(m-1\right) and m is m\left(m-1\right). Multiply \frac{2}{m} times \frac{m-1}{m-1}.
\frac{xm^{2}-m^{2}-2-2\left(m-1\right)}{m\left(m-1\right)}
Since \frac{xm^{2}-m^{2}-2}{m\left(m-1\right)} and \frac{2\left(m-1\right)}{m\left(m-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{xm^{2}-m^{2}-2-2m+2}{m\left(m-1\right)}
Do the multiplications in xm^{2}-m^{2}-2-2\left(m-1\right).
\frac{xm^{2}-m^{2}-2m}{m\left(m-1\right)}
Combine like terms in xm^{2}-m^{2}-2-2m+2.
\frac{m\left(mx-m-2\right)}{m\left(m-1\right)}
Factor the expressions that are not already factored in \frac{xm^{2}-m^{2}-2m}{m\left(m-1\right)}.
\frac{mx-m-2}{m-1}
Cancel out m in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}