Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{m}{m-1}\left(\frac{\left(x-1\right)m^{2}}{m^{2}}-\frac{2}{m^{2}}\right)-\frac{2}{m}
To add or subtract expressions, expand them to make their denominators the same. Multiply x-1 times \frac{m^{2}}{m^{2}}.
\frac{m}{m-1}\times \frac{\left(x-1\right)m^{2}-2}{m^{2}}-\frac{2}{m}
Since \frac{\left(x-1\right)m^{2}}{m^{2}} and \frac{2}{m^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{m}{m-1}\times \frac{xm^{2}-m^{2}-2}{m^{2}}-\frac{2}{m}
Do the multiplications in \left(x-1\right)m^{2}-2.
\frac{m\left(xm^{2}-m^{2}-2\right)}{\left(m-1\right)m^{2}}-\frac{2}{m}
Multiply \frac{m}{m-1} times \frac{xm^{2}-m^{2}-2}{m^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{xm^{2}-m^{2}-2}{m\left(m-1\right)}-\frac{2}{m}
Cancel out m in both numerator and denominator.
\frac{xm^{2}-m^{2}-2}{m\left(m-1\right)}-\frac{2\left(m-1\right)}{m\left(m-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m\left(m-1\right) and m is m\left(m-1\right). Multiply \frac{2}{m} times \frac{m-1}{m-1}.
\frac{xm^{2}-m^{2}-2-2\left(m-1\right)}{m\left(m-1\right)}
Since \frac{xm^{2}-m^{2}-2}{m\left(m-1\right)} and \frac{2\left(m-1\right)}{m\left(m-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{xm^{2}-m^{2}-2-2m+2}{m\left(m-1\right)}
Do the multiplications in xm^{2}-m^{2}-2-2\left(m-1\right).
\frac{xm^{2}-m^{2}-2m}{m\left(m-1\right)}
Combine like terms in xm^{2}-m^{2}-2-2m+2.
\frac{m\left(mx-m-2\right)}{m\left(m-1\right)}
Factor the expressions that are not already factored in \frac{xm^{2}-m^{2}-2m}{m\left(m-1\right)}.
\frac{mx-m-2}{m-1}
Cancel out m in both numerator and denominator.
\frac{m}{m-1}\left(\frac{\left(x-1\right)m^{2}}{m^{2}}-\frac{2}{m^{2}}\right)-\frac{2}{m}
To add or subtract expressions, expand them to make their denominators the same. Multiply x-1 times \frac{m^{2}}{m^{2}}.
\frac{m}{m-1}\times \frac{\left(x-1\right)m^{2}-2}{m^{2}}-\frac{2}{m}
Since \frac{\left(x-1\right)m^{2}}{m^{2}} and \frac{2}{m^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{m}{m-1}\times \frac{xm^{2}-m^{2}-2}{m^{2}}-\frac{2}{m}
Do the multiplications in \left(x-1\right)m^{2}-2.
\frac{m\left(xm^{2}-m^{2}-2\right)}{\left(m-1\right)m^{2}}-\frac{2}{m}
Multiply \frac{m}{m-1} times \frac{xm^{2}-m^{2}-2}{m^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{xm^{2}-m^{2}-2}{m\left(m-1\right)}-\frac{2}{m}
Cancel out m in both numerator and denominator.
\frac{xm^{2}-m^{2}-2}{m\left(m-1\right)}-\frac{2\left(m-1\right)}{m\left(m-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m\left(m-1\right) and m is m\left(m-1\right). Multiply \frac{2}{m} times \frac{m-1}{m-1}.
\frac{xm^{2}-m^{2}-2-2\left(m-1\right)}{m\left(m-1\right)}
Since \frac{xm^{2}-m^{2}-2}{m\left(m-1\right)} and \frac{2\left(m-1\right)}{m\left(m-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{xm^{2}-m^{2}-2-2m+2}{m\left(m-1\right)}
Do the multiplications in xm^{2}-m^{2}-2-2\left(m-1\right).
\frac{xm^{2}-m^{2}-2m}{m\left(m-1\right)}
Combine like terms in xm^{2}-m^{2}-2-2m+2.
\frac{m\left(mx-m-2\right)}{m\left(m-1\right)}
Factor the expressions that are not already factored in \frac{xm^{2}-m^{2}-2m}{m\left(m-1\right)}.
\frac{mx-m-2}{m-1}
Cancel out m in both numerator and denominator.