Evaluate
false
Share
Copied to clipboard
1+\frac{m}{m}=\frac{\frac{1}{3}}{-4}+\frac{-4}{\frac{1}{3}}\text{ and }\frac{\frac{1}{3}}{-4}+\frac{-4}{\frac{1}{3}}=\frac{1}{-12}
Divide m by m to get 1.
1+1=\frac{\frac{1}{3}}{-4}+\frac{-4}{\frac{1}{3}}\text{ and }\frac{\frac{1}{3}}{-4}+\frac{-4}{\frac{1}{3}}=\frac{1}{-12}
Divide m by m to get 1.
2=\frac{\frac{1}{3}}{-4}+\frac{-4}{\frac{1}{3}}\text{ and }\frac{\frac{1}{3}}{-4}+\frac{-4}{\frac{1}{3}}=\frac{1}{-12}
Add 1 and 1 to get 2.
2=\frac{1}{3\left(-4\right)}+\frac{-4}{\frac{1}{3}}\text{ and }\frac{\frac{1}{3}}{-4}+\frac{-4}{\frac{1}{3}}=\frac{1}{-12}
Express \frac{\frac{1}{3}}{-4} as a single fraction.
2=\frac{1}{-12}+\frac{-4}{\frac{1}{3}}\text{ and }\frac{\frac{1}{3}}{-4}+\frac{-4}{\frac{1}{3}}=\frac{1}{-12}
Multiply 3 and -4 to get -12.
2=-\frac{1}{12}+\frac{-4}{\frac{1}{3}}\text{ and }\frac{\frac{1}{3}}{-4}+\frac{-4}{\frac{1}{3}}=\frac{1}{-12}
Fraction \frac{1}{-12} can be rewritten as -\frac{1}{12} by extracting the negative sign.
2=-\frac{1}{12}-4\times 3\text{ and }\frac{\frac{1}{3}}{-4}+\frac{-4}{\frac{1}{3}}=\frac{1}{-12}
Divide -4 by \frac{1}{3} by multiplying -4 by the reciprocal of \frac{1}{3}.
2=-\frac{1}{12}-12\text{ and }\frac{\frac{1}{3}}{-4}+\frac{-4}{\frac{1}{3}}=\frac{1}{-12}
Multiply -4 and 3 to get -12.
2=-\frac{1}{12}-\frac{144}{12}\text{ and }\frac{\frac{1}{3}}{-4}+\frac{-4}{\frac{1}{3}}=\frac{1}{-12}
Convert 12 to fraction \frac{144}{12}.
2=\frac{-1-144}{12}\text{ and }\frac{\frac{1}{3}}{-4}+\frac{-4}{\frac{1}{3}}=\frac{1}{-12}
Since -\frac{1}{12} and \frac{144}{12} have the same denominator, subtract them by subtracting their numerators.
2=-\frac{145}{12}\text{ and }\frac{\frac{1}{3}}{-4}+\frac{-4}{\frac{1}{3}}=\frac{1}{-12}
Subtract 144 from -1 to get -145.
\frac{24}{12}=-\frac{145}{12}\text{ and }\frac{\frac{1}{3}}{-4}+\frac{-4}{\frac{1}{3}}=\frac{1}{-12}
Convert 2 to fraction \frac{24}{12}.
\text{false}\text{ and }\frac{\frac{1}{3}}{-4}+\frac{-4}{\frac{1}{3}}=\frac{1}{-12}
Compare \frac{24}{12} and -\frac{145}{12}.
\text{false}\text{ and }\frac{1}{3\left(-4\right)}+\frac{-4}{\frac{1}{3}}=\frac{1}{-12}
Express \frac{\frac{1}{3}}{-4} as a single fraction.
\text{false}\text{ and }\frac{1}{-12}+\frac{-4}{\frac{1}{3}}=\frac{1}{-12}
Multiply 3 and -4 to get -12.
\text{false}\text{ and }-\frac{1}{12}+\frac{-4}{\frac{1}{3}}=\frac{1}{-12}
Fraction \frac{1}{-12} can be rewritten as -\frac{1}{12} by extracting the negative sign.
\text{false}\text{ and }-\frac{1}{12}-4\times 3=\frac{1}{-12}
Divide -4 by \frac{1}{3} by multiplying -4 by the reciprocal of \frac{1}{3}.
\text{false}\text{ and }-\frac{1}{12}-12=\frac{1}{-12}
Multiply -4 and 3 to get -12.
\text{false}\text{ and }-\frac{1}{12}-\frac{144}{12}=\frac{1}{-12}
Convert 12 to fraction \frac{144}{12}.
\text{false}\text{ and }\frac{-1-144}{12}=\frac{1}{-12}
Since -\frac{1}{12} and \frac{144}{12} have the same denominator, subtract them by subtracting their numerators.
\text{false}\text{ and }-\frac{145}{12}=\frac{1}{-12}
Subtract 144 from -1 to get -145.
\text{false}\text{ and }-\frac{145}{12}=-\frac{1}{12}
Fraction \frac{1}{-12} can be rewritten as -\frac{1}{12} by extracting the negative sign.
\text{false}\text{ and }\text{false}
Compare -\frac{145}{12} and -\frac{1}{12}.
\text{false}
The conjunction of \text{false} and \text{false} is \text{false}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}