Skip to main content
Evaluate
false
Tick mark Image

Similar Problems from Web Search

Share

1+\frac{m}{m}=\frac{\frac{1}{3}}{-4}+\frac{-4}{\frac{1}{3}}\text{ and }\frac{\frac{1}{3}}{-4}+\frac{-4}{\frac{1}{3}}=\frac{1}{-12}
Divide m by m to get 1.
1+1=\frac{\frac{1}{3}}{-4}+\frac{-4}{\frac{1}{3}}\text{ and }\frac{\frac{1}{3}}{-4}+\frac{-4}{\frac{1}{3}}=\frac{1}{-12}
Divide m by m to get 1.
2=\frac{\frac{1}{3}}{-4}+\frac{-4}{\frac{1}{3}}\text{ and }\frac{\frac{1}{3}}{-4}+\frac{-4}{\frac{1}{3}}=\frac{1}{-12}
Add 1 and 1 to get 2.
2=\frac{1}{3\left(-4\right)}+\frac{-4}{\frac{1}{3}}\text{ and }\frac{\frac{1}{3}}{-4}+\frac{-4}{\frac{1}{3}}=\frac{1}{-12}
Express \frac{\frac{1}{3}}{-4} as a single fraction.
2=\frac{1}{-12}+\frac{-4}{\frac{1}{3}}\text{ and }\frac{\frac{1}{3}}{-4}+\frac{-4}{\frac{1}{3}}=\frac{1}{-12}
Multiply 3 and -4 to get -12.
2=-\frac{1}{12}+\frac{-4}{\frac{1}{3}}\text{ and }\frac{\frac{1}{3}}{-4}+\frac{-4}{\frac{1}{3}}=\frac{1}{-12}
Fraction \frac{1}{-12} can be rewritten as -\frac{1}{12} by extracting the negative sign.
2=-\frac{1}{12}-4\times 3\text{ and }\frac{\frac{1}{3}}{-4}+\frac{-4}{\frac{1}{3}}=\frac{1}{-12}
Divide -4 by \frac{1}{3} by multiplying -4 by the reciprocal of \frac{1}{3}.
2=-\frac{1}{12}-12\text{ and }\frac{\frac{1}{3}}{-4}+\frac{-4}{\frac{1}{3}}=\frac{1}{-12}
Multiply -4 and 3 to get -12.
2=-\frac{1}{12}-\frac{144}{12}\text{ and }\frac{\frac{1}{3}}{-4}+\frac{-4}{\frac{1}{3}}=\frac{1}{-12}
Convert 12 to fraction \frac{144}{12}.
2=\frac{-1-144}{12}\text{ and }\frac{\frac{1}{3}}{-4}+\frac{-4}{\frac{1}{3}}=\frac{1}{-12}
Since -\frac{1}{12} and \frac{144}{12} have the same denominator, subtract them by subtracting their numerators.
2=-\frac{145}{12}\text{ and }\frac{\frac{1}{3}}{-4}+\frac{-4}{\frac{1}{3}}=\frac{1}{-12}
Subtract 144 from -1 to get -145.
\frac{24}{12}=-\frac{145}{12}\text{ and }\frac{\frac{1}{3}}{-4}+\frac{-4}{\frac{1}{3}}=\frac{1}{-12}
Convert 2 to fraction \frac{24}{12}.
\text{false}\text{ and }\frac{\frac{1}{3}}{-4}+\frac{-4}{\frac{1}{3}}=\frac{1}{-12}
Compare \frac{24}{12} and -\frac{145}{12}.
\text{false}\text{ and }\frac{1}{3\left(-4\right)}+\frac{-4}{\frac{1}{3}}=\frac{1}{-12}
Express \frac{\frac{1}{3}}{-4} as a single fraction.
\text{false}\text{ and }\frac{1}{-12}+\frac{-4}{\frac{1}{3}}=\frac{1}{-12}
Multiply 3 and -4 to get -12.
\text{false}\text{ and }-\frac{1}{12}+\frac{-4}{\frac{1}{3}}=\frac{1}{-12}
Fraction \frac{1}{-12} can be rewritten as -\frac{1}{12} by extracting the negative sign.
\text{false}\text{ and }-\frac{1}{12}-4\times 3=\frac{1}{-12}
Divide -4 by \frac{1}{3} by multiplying -4 by the reciprocal of \frac{1}{3}.
\text{false}\text{ and }-\frac{1}{12}-12=\frac{1}{-12}
Multiply -4 and 3 to get -12.
\text{false}\text{ and }-\frac{1}{12}-\frac{144}{12}=\frac{1}{-12}
Convert 12 to fraction \frac{144}{12}.
\text{false}\text{ and }\frac{-1-144}{12}=\frac{1}{-12}
Since -\frac{1}{12} and \frac{144}{12} have the same denominator, subtract them by subtracting their numerators.
\text{false}\text{ and }-\frac{145}{12}=\frac{1}{-12}
Subtract 144 from -1 to get -145.
\text{false}\text{ and }-\frac{145}{12}=-\frac{1}{12}
Fraction \frac{1}{-12} can be rewritten as -\frac{1}{12} by extracting the negative sign.
\text{false}\text{ and }\text{false}
Compare -\frac{145}{12} and -\frac{1}{12}.
\text{false}
The conjunction of \text{false} and \text{false} is \text{false}.