Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. m
Tick mark Image

Similar Problems from Web Search

Share

\frac{m}{\left(m-1\right)\left(m+1\right)}-\frac{1}{\left(m-1\right)\left(-m-1\right)}
Factor m^{2}-1. Factor 1-m^{2}.
\frac{m}{\left(m-1\right)\left(m+1\right)}-\frac{-1}{\left(m-1\right)\left(m+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(m-1\right)\left(m+1\right) and \left(m-1\right)\left(-m-1\right) is \left(m-1\right)\left(m+1\right). Multiply \frac{1}{\left(m-1\right)\left(-m-1\right)} times \frac{-1}{-1}.
\frac{m-\left(-1\right)}{\left(m-1\right)\left(m+1\right)}
Since \frac{m}{\left(m-1\right)\left(m+1\right)} and \frac{-1}{\left(m-1\right)\left(m+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{m+1}{\left(m-1\right)\left(m+1\right)}
Do the multiplications in m-\left(-1\right).
\frac{1}{m-1}
Cancel out m+1 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{m}{\left(m-1\right)\left(m+1\right)}-\frac{1}{\left(m-1\right)\left(-m-1\right)})
Factor m^{2}-1. Factor 1-m^{2}.
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{m}{\left(m-1\right)\left(m+1\right)}-\frac{-1}{\left(m-1\right)\left(m+1\right)})
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(m-1\right)\left(m+1\right) and \left(m-1\right)\left(-m-1\right) is \left(m-1\right)\left(m+1\right). Multiply \frac{1}{\left(m-1\right)\left(-m-1\right)} times \frac{-1}{-1}.
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{m-\left(-1\right)}{\left(m-1\right)\left(m+1\right)})
Since \frac{m}{\left(m-1\right)\left(m+1\right)} and \frac{-1}{\left(m-1\right)\left(m+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{m+1}{\left(m-1\right)\left(m+1\right)})
Do the multiplications in m-\left(-1\right).
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{1}{m-1})
Cancel out m+1 in both numerator and denominator.
-\left(m^{1}-1\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}m}(m^{1}-1)
If F is the composition of two differentiable functions f\left(u\right) and u=g\left(x\right), that is, if F\left(x\right)=f\left(g\left(x\right)\right), then the derivative of F is the derivative of f with respect to u times the derivative of g with respect to x, that is, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(m^{1}-1\right)^{-2}m^{1-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
-m^{0}\left(m^{1}-1\right)^{-2}
Simplify.
-m^{0}\left(m-1\right)^{-2}
For any term t, t^{1}=t.
-\left(m-1\right)^{-2}
For any term t except 0, t^{0}=1.