Evaluate
-\frac{n+19}{4\left(m+5\right)}
Expand
-\frac{n+19}{4\left(m+5\right)}
Share
Copied to clipboard
\frac{m}{m\left(m+5\right)}-\frac{7}{5+m}-\frac{n-5}{4m+20}
Factor the expressions that are not already factored in \frac{m}{m^{2}+5m}.
\frac{1}{m+5}-\frac{7}{5+m}-\frac{n-5}{4m+20}
Cancel out m in both numerator and denominator.
\frac{-6}{m+5}-\frac{n-5}{4m+20}
Since \frac{1}{m+5} and \frac{7}{5+m} have the same denominator, subtract them by subtracting their numerators. Subtract 7 from 1 to get -6.
\frac{-6}{m+5}-\frac{n-5}{4\left(m+5\right)}
Factor 4m+20.
\frac{-6\times 4}{4\left(m+5\right)}-\frac{n-5}{4\left(m+5\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m+5 and 4\left(m+5\right) is 4\left(m+5\right). Multiply \frac{-6}{m+5} times \frac{4}{4}.
\frac{-6\times 4-\left(n-5\right)}{4\left(m+5\right)}
Since \frac{-6\times 4}{4\left(m+5\right)} and \frac{n-5}{4\left(m+5\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-24-n+5}{4\left(m+5\right)}
Do the multiplications in -6\times 4-\left(n-5\right).
\frac{-19-n}{4\left(m+5\right)}
Combine like terms in -24-n+5.
\frac{-19-n}{4m+20}
Expand 4\left(m+5\right).
\frac{m}{m\left(m+5\right)}-\frac{7}{5+m}-\frac{n-5}{4m+20}
Factor the expressions that are not already factored in \frac{m}{m^{2}+5m}.
\frac{1}{m+5}-\frac{7}{5+m}-\frac{n-5}{4m+20}
Cancel out m in both numerator and denominator.
\frac{-6}{m+5}-\frac{n-5}{4m+20}
Since \frac{1}{m+5} and \frac{7}{5+m} have the same denominator, subtract them by subtracting their numerators. Subtract 7 from 1 to get -6.
\frac{-6}{m+5}-\frac{n-5}{4\left(m+5\right)}
Factor 4m+20.
\frac{-6\times 4}{4\left(m+5\right)}-\frac{n-5}{4\left(m+5\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m+5 and 4\left(m+5\right) is 4\left(m+5\right). Multiply \frac{-6}{m+5} times \frac{4}{4}.
\frac{-6\times 4-\left(n-5\right)}{4\left(m+5\right)}
Since \frac{-6\times 4}{4\left(m+5\right)} and \frac{n-5}{4\left(m+5\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-24-n+5}{4\left(m+5\right)}
Do the multiplications in -6\times 4-\left(n-5\right).
\frac{-19-n}{4\left(m+5\right)}
Combine like terms in -24-n+5.
\frac{-19-n}{4m+20}
Expand 4\left(m+5\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}