Solve for m
m = -\frac{567}{41} = -13\frac{34}{41} \approx -13.829268293
Share
Copied to clipboard
22m=63\left(m+9\right)
Variable m cannot be equal to -9 since division by zero is not defined. Multiply both sides of the equation by 22\left(m+9\right), the least common multiple of m+9,22.
22m=63m+567
Use the distributive property to multiply 63 by m+9.
22m-63m=567
Subtract 63m from both sides.
-41m=567
Combine 22m and -63m to get -41m.
m=\frac{567}{-41}
Divide both sides by -41.
m=-\frac{567}{41}
Fraction \frac{567}{-41} can be rewritten as -\frac{567}{41} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}