Solve for m
m = -\frac{3}{2} = -1\frac{1}{2} = -1.5
Share
Copied to clipboard
\left(m-1\right)m+\left(m+1\right)\times 5=\left(m-1\right)\left(m+1\right)
Variable m cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by \left(m-1\right)\left(m+1\right), the least common multiple of m+1,m-1.
m^{2}-m+\left(m+1\right)\times 5=\left(m-1\right)\left(m+1\right)
Use the distributive property to multiply m-1 by m.
m^{2}-m+5m+5=\left(m-1\right)\left(m+1\right)
Use the distributive property to multiply m+1 by 5.
m^{2}+4m+5=\left(m-1\right)\left(m+1\right)
Combine -m and 5m to get 4m.
m^{2}+4m+5=m^{2}-1
Consider \left(m-1\right)\left(m+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
m^{2}+4m+5-m^{2}=-1
Subtract m^{2} from both sides.
4m+5=-1
Combine m^{2} and -m^{2} to get 0.
4m=-1-5
Subtract 5 from both sides.
4m=-6
Subtract 5 from -1 to get -6.
m=\frac{-6}{4}
Divide both sides by 4.
m=-\frac{3}{2}
Reduce the fraction \frac{-6}{4} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}