Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{m}{7}\times \frac{2}{x^{2}-4}-\frac{1}{2x-4}
Express \frac{m}{7}\times 1 as a single fraction.
\frac{m\times 2}{7\left(x^{2}-4\right)}-\frac{1}{2x-4}
Multiply \frac{m}{7} times \frac{2}{x^{2}-4} by multiplying numerator times numerator and denominator times denominator.
\frac{m\times 2}{7\left(x-2\right)\left(x+2\right)}-\frac{1}{2\left(x-2\right)}
Factor 7\left(x^{2}-4\right). Factor 2x-4.
\frac{2m\times 2}{14\left(x-2\right)\left(x+2\right)}-\frac{7\left(x+2\right)}{14\left(x-2\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 7\left(x-2\right)\left(x+2\right) and 2\left(x-2\right) is 14\left(x-2\right)\left(x+2\right). Multiply \frac{m\times 2}{7\left(x-2\right)\left(x+2\right)} times \frac{2}{2}. Multiply \frac{1}{2\left(x-2\right)} times \frac{7\left(x+2\right)}{7\left(x+2\right)}.
\frac{2m\times 2-7\left(x+2\right)}{14\left(x-2\right)\left(x+2\right)}
Since \frac{2m\times 2}{14\left(x-2\right)\left(x+2\right)} and \frac{7\left(x+2\right)}{14\left(x-2\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4m-7x-14}{14\left(x-2\right)\left(x+2\right)}
Do the multiplications in 2m\times 2-7\left(x+2\right).
\frac{4m-7x-14}{14x^{2}-56}
Expand 14\left(x-2\right)\left(x+2\right).