Solve for m
m<\frac{57}{7}
Share
Copied to clipboard
3m-48<9-4m
Multiply both sides of the equation by 12, the least common multiple of 4,3. Since 12 is positive, the inequality direction remains the same.
3m-48+4m<9
Add 4m to both sides.
7m-48<9
Combine 3m and 4m to get 7m.
7m<9+48
Add 48 to both sides.
7m<57
Add 9 and 48 to get 57.
m<\frac{57}{7}
Divide both sides by 7. Since 7 is positive, the inequality direction remains the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}