Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. m
Tick mark Image

Similar Problems from Web Search

Share

\frac{m}{2m^{2}+m+1}-\frac{1}{\left(2m-1\right)\left(m+1\right)}
Factor 2m^{2}+m-1.
\frac{m\left(2m-1\right)\left(m+1\right)}{\left(2m-1\right)\left(m+1\right)\left(2m^{2}+m+1\right)}-\frac{2m^{2}+m+1}{\left(2m-1\right)\left(m+1\right)\left(2m^{2}+m+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2m^{2}+m+1 and \left(2m-1\right)\left(m+1\right) is \left(2m-1\right)\left(m+1\right)\left(2m^{2}+m+1\right). Multiply \frac{m}{2m^{2}+m+1} times \frac{\left(2m-1\right)\left(m+1\right)}{\left(2m-1\right)\left(m+1\right)}. Multiply \frac{1}{\left(2m-1\right)\left(m+1\right)} times \frac{2m^{2}+m+1}{2m^{2}+m+1}.
\frac{m\left(2m-1\right)\left(m+1\right)-\left(2m^{2}+m+1\right)}{\left(2m-1\right)\left(m+1\right)\left(2m^{2}+m+1\right)}
Since \frac{m\left(2m-1\right)\left(m+1\right)}{\left(2m-1\right)\left(m+1\right)\left(2m^{2}+m+1\right)} and \frac{2m^{2}+m+1}{\left(2m-1\right)\left(m+1\right)\left(2m^{2}+m+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2m^{3}+2m^{2}-m^{2}-m-2m^{2}-m-1}{\left(2m-1\right)\left(m+1\right)\left(2m^{2}+m+1\right)}
Do the multiplications in m\left(2m-1\right)\left(m+1\right)-\left(2m^{2}+m+1\right).
\frac{2m^{3}-m^{2}-2m-1}{\left(2m-1\right)\left(m+1\right)\left(2m^{2}+m+1\right)}
Combine like terms in 2m^{3}+2m^{2}-m^{2}-m-2m^{2}-m-1.
\frac{2m^{3}-m^{2}-2m-1}{4m^{4}+4m^{3}+m^{2}-1}
Expand \left(2m-1\right)\left(m+1\right)\left(2m^{2}+m+1\right).