Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{m^{4}\left(3m-13\right)}{\left(3m-13\right)\left(-2m+1\right)\left(5m+4\right)}-\frac{3m\left(5m+4\right)}{\left(3m-13\right)\left(-2m+1\right)\left(5m+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(5m+4\right)\left(1-2m\right) and \left(3m-13\right)\left(1-2m\right) is \left(3m-13\right)\left(-2m+1\right)\left(5m+4\right). Multiply \frac{m^{4}}{\left(5m+4\right)\left(1-2m\right)} times \frac{3m-13}{3m-13}. Multiply \frac{3m}{\left(3m-13\right)\left(1-2m\right)} times \frac{5m+4}{5m+4}.
\frac{m^{4}\left(3m-13\right)-3m\left(5m+4\right)}{\left(3m-13\right)\left(-2m+1\right)\left(5m+4\right)}
Since \frac{m^{4}\left(3m-13\right)}{\left(3m-13\right)\left(-2m+1\right)\left(5m+4\right)} and \frac{3m\left(5m+4\right)}{\left(3m-13\right)\left(-2m+1\right)\left(5m+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3m^{5}-13m^{4}-15m^{2}-12m}{\left(3m-13\right)\left(-2m+1\right)\left(5m+4\right)}
Do the multiplications in m^{4}\left(3m-13\right)-3m\left(5m+4\right).
\frac{3m^{5}-13m^{4}-15m^{2}-12m}{-30m^{3}+121m^{2}+51m-52}
Expand \left(3m-13\right)\left(-2m+1\right)\left(5m+4\right).
\frac{m^{4}\left(3m-13\right)}{\left(3m-13\right)\left(-2m+1\right)\left(5m+4\right)}-\frac{3m\left(5m+4\right)}{\left(3m-13\right)\left(-2m+1\right)\left(5m+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(5m+4\right)\left(1-2m\right) and \left(3m-13\right)\left(1-2m\right) is \left(3m-13\right)\left(-2m+1\right)\left(5m+4\right). Multiply \frac{m^{4}}{\left(5m+4\right)\left(1-2m\right)} times \frac{3m-13}{3m-13}. Multiply \frac{3m}{\left(3m-13\right)\left(1-2m\right)} times \frac{5m+4}{5m+4}.
\frac{m^{4}\left(3m-13\right)-3m\left(5m+4\right)}{\left(3m-13\right)\left(-2m+1\right)\left(5m+4\right)}
Since \frac{m^{4}\left(3m-13\right)}{\left(3m-13\right)\left(-2m+1\right)\left(5m+4\right)} and \frac{3m\left(5m+4\right)}{\left(3m-13\right)\left(-2m+1\right)\left(5m+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3m^{5}-13m^{4}-15m^{2}-12m}{\left(3m-13\right)\left(-2m+1\right)\left(5m+4\right)}
Do the multiplications in m^{4}\left(3m-13\right)-3m\left(5m+4\right).
\frac{3m^{5}-13m^{4}-15m^{2}-12m}{-30m^{3}+121m^{2}+51m-52}
Expand \left(3m-13\right)\left(-2m+1\right)\left(5m+4\right).