Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{125m^{3}+64n^{3}}{8000}
Factor out \frac{1}{8000}.
\left(5m+4n\right)\left(25m^{2}-20mn+16n^{2}\right)
Consider 125m^{3}+64n^{3}. Rewrite 125m^{3}+64n^{3} as \left(5m\right)^{3}+\left(4n\right)^{3}. The sum of cubes can be factored using the rule: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\frac{\left(5m+4n\right)\left(25m^{2}-20mn+16n^{2}\right)}{8000}
Rewrite the complete factored expression.
\frac{125m^{3}}{8000}+\frac{64n^{3}}{8000}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 64 and 125 is 8000. Multiply \frac{m^{3}}{64} times \frac{125}{125}. Multiply \frac{n^{3}}{125} times \frac{64}{64}.
\frac{125m^{3}+64n^{3}}{8000}
Since \frac{125m^{3}}{8000} and \frac{64n^{3}}{8000} have the same denominator, add them by adding their numerators.