Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{m^{2}-6m+8}{2\left(m-1\right)}-\frac{10}{m-4}
Factor 2m-2.
\frac{\left(m^{2}-6m+8\right)\left(m-4\right)}{2\left(m-4\right)\left(m-1\right)}-\frac{10\times 2\left(m-1\right)}{2\left(m-4\right)\left(m-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(m-1\right) and m-4 is 2\left(m-4\right)\left(m-1\right). Multiply \frac{m^{2}-6m+8}{2\left(m-1\right)} times \frac{m-4}{m-4}. Multiply \frac{10}{m-4} times \frac{2\left(m-1\right)}{2\left(m-1\right)}.
\frac{\left(m^{2}-6m+8\right)\left(m-4\right)-10\times 2\left(m-1\right)}{2\left(m-4\right)\left(m-1\right)}
Since \frac{\left(m^{2}-6m+8\right)\left(m-4\right)}{2\left(m-4\right)\left(m-1\right)} and \frac{10\times 2\left(m-1\right)}{2\left(m-4\right)\left(m-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{m^{3}-4m^{2}-6m^{2}+24m+8m-32-20m+20}{2\left(m-4\right)\left(m-1\right)}
Do the multiplications in \left(m^{2}-6m+8\right)\left(m-4\right)-10\times 2\left(m-1\right).
\frac{m^{3}-10m^{2}+12m-12}{2\left(m-4\right)\left(m-1\right)}
Combine like terms in m^{3}-4m^{2}-6m^{2}+24m+8m-32-20m+20.
\frac{m^{3}-10m^{2}+12m-12}{2m^{2}-10m+8}
Expand 2\left(m-4\right)\left(m-1\right).
\frac{m^{2}-6m+8}{2\left(m-1\right)}-\frac{10}{m-4}
Factor 2m-2.
\frac{\left(m^{2}-6m+8\right)\left(m-4\right)}{2\left(m-4\right)\left(m-1\right)}-\frac{10\times 2\left(m-1\right)}{2\left(m-4\right)\left(m-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(m-1\right) and m-4 is 2\left(m-4\right)\left(m-1\right). Multiply \frac{m^{2}-6m+8}{2\left(m-1\right)} times \frac{m-4}{m-4}. Multiply \frac{10}{m-4} times \frac{2\left(m-1\right)}{2\left(m-1\right)}.
\frac{\left(m^{2}-6m+8\right)\left(m-4\right)-10\times 2\left(m-1\right)}{2\left(m-4\right)\left(m-1\right)}
Since \frac{\left(m^{2}-6m+8\right)\left(m-4\right)}{2\left(m-4\right)\left(m-1\right)} and \frac{10\times 2\left(m-1\right)}{2\left(m-4\right)\left(m-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{m^{3}-4m^{2}-6m^{2}+24m+8m-32-20m+20}{2\left(m-4\right)\left(m-1\right)}
Do the multiplications in \left(m^{2}-6m+8\right)\left(m-4\right)-10\times 2\left(m-1\right).
\frac{m^{3}-10m^{2}+12m-12}{2\left(m-4\right)\left(m-1\right)}
Combine like terms in m^{3}-4m^{2}-6m^{2}+24m+8m-32-20m+20.
\frac{m^{3}-10m^{2}+12m-12}{2m^{2}-10m+8}
Expand 2\left(m-4\right)\left(m-1\right).