Evaluate
-\frac{m-2}{m+2}
Expand
-\frac{m-2}{m+2}
Share
Copied to clipboard
\frac{\frac{m^{2}-4m+4}{m-1}}{\frac{3}{m-1}+\frac{\left(-m-1\right)\left(m-1\right)}{m-1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -m-1 times \frac{m-1}{m-1}.
\frac{\frac{m^{2}-4m+4}{m-1}}{\frac{3+\left(-m-1\right)\left(m-1\right)}{m-1}}
Since \frac{3}{m-1} and \frac{\left(-m-1\right)\left(m-1\right)}{m-1} have the same denominator, add them by adding their numerators.
\frac{\frac{m^{2}-4m+4}{m-1}}{\frac{3-m^{2}+m-m+1}{m-1}}
Do the multiplications in 3+\left(-m-1\right)\left(m-1\right).
\frac{\frac{m^{2}-4m+4}{m-1}}{\frac{4-m^{2}}{m-1}}
Combine like terms in 3-m^{2}+m-m+1.
\frac{\left(m^{2}-4m+4\right)\left(m-1\right)}{\left(m-1\right)\left(4-m^{2}\right)}
Divide \frac{m^{2}-4m+4}{m-1} by \frac{4-m^{2}}{m-1} by multiplying \frac{m^{2}-4m+4}{m-1} by the reciprocal of \frac{4-m^{2}}{m-1}.
\frac{m^{2}-4m+4}{-m^{2}+4}
Cancel out m-1 in both numerator and denominator.
\frac{\left(m-2\right)^{2}}{\left(m-2\right)\left(-m-2\right)}
Factor the expressions that are not already factored.
\frac{m-2}{-m-2}
Cancel out m-2 in both numerator and denominator.
\frac{\frac{m^{2}-4m+4}{m-1}}{\frac{3}{m-1}+\frac{\left(-m-1\right)\left(m-1\right)}{m-1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -m-1 times \frac{m-1}{m-1}.
\frac{\frac{m^{2}-4m+4}{m-1}}{\frac{3+\left(-m-1\right)\left(m-1\right)}{m-1}}
Since \frac{3}{m-1} and \frac{\left(-m-1\right)\left(m-1\right)}{m-1} have the same denominator, add them by adding their numerators.
\frac{\frac{m^{2}-4m+4}{m-1}}{\frac{3-m^{2}+m-m+1}{m-1}}
Do the multiplications in 3+\left(-m-1\right)\left(m-1\right).
\frac{\frac{m^{2}-4m+4}{m-1}}{\frac{4-m^{2}}{m-1}}
Combine like terms in 3-m^{2}+m-m+1.
\frac{\left(m^{2}-4m+4\right)\left(m-1\right)}{\left(m-1\right)\left(4-m^{2}\right)}
Divide \frac{m^{2}-4m+4}{m-1} by \frac{4-m^{2}}{m-1} by multiplying \frac{m^{2}-4m+4}{m-1} by the reciprocal of \frac{4-m^{2}}{m-1}.
\frac{m^{2}-4m+4}{-m^{2}+4}
Cancel out m-1 in both numerator and denominator.
\frac{\left(m-2\right)^{2}}{\left(m-2\right)\left(-m-2\right)}
Factor the expressions that are not already factored.
\frac{m-2}{-m-2}
Cancel out m-2 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}