Evaluate
\frac{4m-9}{3\left(m+1\right)}
Expand
\frac{4m-9}{3\left(m+1\right)}
Share
Copied to clipboard
\frac{\left(m-3\right)\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}+\frac{m^{2}+6m}{3m^{2}+21m+18}
Factor the expressions that are not already factored in \frac{m^{2}-4m+3}{m^{2}-1}.
\frac{m-3}{m+1}+\frac{m^{2}+6m}{3m^{2}+21m+18}
Cancel out m-1 in both numerator and denominator.
\frac{m-3}{m+1}+\frac{m\left(m+6\right)}{3\left(m+1\right)\left(m+6\right)}
Factor the expressions that are not already factored in \frac{m^{2}+6m}{3m^{2}+21m+18}.
\frac{m-3}{m+1}+\frac{m}{3\left(m+1\right)}
Cancel out m+6 in both numerator and denominator.
\frac{3\left(m-3\right)}{3\left(m+1\right)}+\frac{m}{3\left(m+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m+1 and 3\left(m+1\right) is 3\left(m+1\right). Multiply \frac{m-3}{m+1} times \frac{3}{3}.
\frac{3\left(m-3\right)+m}{3\left(m+1\right)}
Since \frac{3\left(m-3\right)}{3\left(m+1\right)} and \frac{m}{3\left(m+1\right)} have the same denominator, add them by adding their numerators.
\frac{3m-9+m}{3\left(m+1\right)}
Do the multiplications in 3\left(m-3\right)+m.
\frac{4m-9}{3\left(m+1\right)}
Combine like terms in 3m-9+m.
\frac{4m-9}{3m+3}
Expand 3\left(m+1\right).
\frac{\left(m-3\right)\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}+\frac{m^{2}+6m}{3m^{2}+21m+18}
Factor the expressions that are not already factored in \frac{m^{2}-4m+3}{m^{2}-1}.
\frac{m-3}{m+1}+\frac{m^{2}+6m}{3m^{2}+21m+18}
Cancel out m-1 in both numerator and denominator.
\frac{m-3}{m+1}+\frac{m\left(m+6\right)}{3\left(m+1\right)\left(m+6\right)}
Factor the expressions that are not already factored in \frac{m^{2}+6m}{3m^{2}+21m+18}.
\frac{m-3}{m+1}+\frac{m}{3\left(m+1\right)}
Cancel out m+6 in both numerator and denominator.
\frac{3\left(m-3\right)}{3\left(m+1\right)}+\frac{m}{3\left(m+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m+1 and 3\left(m+1\right) is 3\left(m+1\right). Multiply \frac{m-3}{m+1} times \frac{3}{3}.
\frac{3\left(m-3\right)+m}{3\left(m+1\right)}
Since \frac{3\left(m-3\right)}{3\left(m+1\right)} and \frac{m}{3\left(m+1\right)} have the same denominator, add them by adding their numerators.
\frac{3m-9+m}{3\left(m+1\right)}
Do the multiplications in 3\left(m-3\right)+m.
\frac{4m-9}{3\left(m+1\right)}
Combine like terms in 3m-9+m.
\frac{4m-9}{3m+3}
Expand 3\left(m+1\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}