Evaluate
\frac{1}{m}
Expand
\frac{1}{m}
Share
Copied to clipboard
\frac{\frac{\left(m-1\right)^{2}}{\left(m-1\right)\left(m+1\right)}}{m-1-\frac{m-1}{m+1}}
Factor the expressions that are not already factored in \frac{m^{2}-2m+1}{m^{2}-1}.
\frac{\frac{m-1}{m+1}}{m-1-\frac{m-1}{m+1}}
Cancel out m-1 in both numerator and denominator.
\frac{\frac{m-1}{m+1}}{\frac{\left(m-1\right)\left(m+1\right)}{m+1}-\frac{m-1}{m+1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply m-1 times \frac{m+1}{m+1}.
\frac{\frac{m-1}{m+1}}{\frac{\left(m-1\right)\left(m+1\right)-\left(m-1\right)}{m+1}}
Since \frac{\left(m-1\right)\left(m+1\right)}{m+1} and \frac{m-1}{m+1} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{m-1}{m+1}}{\frac{m^{2}+m-m-1-m+1}{m+1}}
Do the multiplications in \left(m-1\right)\left(m+1\right)-\left(m-1\right).
\frac{\frac{m-1}{m+1}}{\frac{m^{2}-m}{m+1}}
Combine like terms in m^{2}+m-m-1-m+1.
\frac{\left(m-1\right)\left(m+1\right)}{\left(m+1\right)\left(m^{2}-m\right)}
Divide \frac{m-1}{m+1} by \frac{m^{2}-m}{m+1} by multiplying \frac{m-1}{m+1} by the reciprocal of \frac{m^{2}-m}{m+1}.
\frac{m-1}{m^{2}-m}
Cancel out m+1 in both numerator and denominator.
\frac{m-1}{m\left(m-1\right)}
Factor the expressions that are not already factored.
\frac{1}{m}
Cancel out m-1 in both numerator and denominator.
\frac{\frac{\left(m-1\right)^{2}}{\left(m-1\right)\left(m+1\right)}}{m-1-\frac{m-1}{m+1}}
Factor the expressions that are not already factored in \frac{m^{2}-2m+1}{m^{2}-1}.
\frac{\frac{m-1}{m+1}}{m-1-\frac{m-1}{m+1}}
Cancel out m-1 in both numerator and denominator.
\frac{\frac{m-1}{m+1}}{\frac{\left(m-1\right)\left(m+1\right)}{m+1}-\frac{m-1}{m+1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply m-1 times \frac{m+1}{m+1}.
\frac{\frac{m-1}{m+1}}{\frac{\left(m-1\right)\left(m+1\right)-\left(m-1\right)}{m+1}}
Since \frac{\left(m-1\right)\left(m+1\right)}{m+1} and \frac{m-1}{m+1} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{m-1}{m+1}}{\frac{m^{2}+m-m-1-m+1}{m+1}}
Do the multiplications in \left(m-1\right)\left(m+1\right)-\left(m-1\right).
\frac{\frac{m-1}{m+1}}{\frac{m^{2}-m}{m+1}}
Combine like terms in m^{2}+m-m-1-m+1.
\frac{\left(m-1\right)\left(m+1\right)}{\left(m+1\right)\left(m^{2}-m\right)}
Divide \frac{m-1}{m+1} by \frac{m^{2}-m}{m+1} by multiplying \frac{m-1}{m+1} by the reciprocal of \frac{m^{2}-m}{m+1}.
\frac{m-1}{m^{2}-m}
Cancel out m+1 in both numerator and denominator.
\frac{m-1}{m\left(m-1\right)}
Factor the expressions that are not already factored.
\frac{1}{m}
Cancel out m-1 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}