Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{m^{2}+9m+18}{m-5}\times \frac{5\left(m-5\right)}{5\left(m+3\right)}
Factor the expressions that are not already factored in \frac{5m-25}{5m+15}.
\frac{m^{2}+9m+18}{m-5}\times \frac{m-5}{m+3}
Cancel out 5 in both numerator and denominator.
\frac{\left(m^{2}+9m+18\right)\left(m-5\right)}{\left(m-5\right)\left(m+3\right)}
Multiply \frac{m^{2}+9m+18}{m-5} times \frac{m-5}{m+3} by multiplying numerator times numerator and denominator times denominator.
\frac{m^{2}+9m+18}{m+3}
Cancel out m-5 in both numerator and denominator.
\frac{\left(m+3\right)\left(m+6\right)}{m+3}
Factor the expressions that are not already factored.
m+6
Cancel out m+3 in both numerator and denominator.
\frac{m^{2}+9m+18}{m-5}\times \frac{5\left(m-5\right)}{5\left(m+3\right)}
Factor the expressions that are not already factored in \frac{5m-25}{5m+15}.
\frac{m^{2}+9m+18}{m-5}\times \frac{m-5}{m+3}
Cancel out 5 in both numerator and denominator.
\frac{\left(m^{2}+9m+18\right)\left(m-5\right)}{\left(m-5\right)\left(m+3\right)}
Multiply \frac{m^{2}+9m+18}{m-5} times \frac{m-5}{m+3} by multiplying numerator times numerator and denominator times denominator.
\frac{m^{2}+9m+18}{m+3}
Cancel out m-5 in both numerator and denominator.
\frac{\left(m+3\right)\left(m+6\right)}{m+3}
Factor the expressions that are not already factored.
m+6
Cancel out m+3 in both numerator and denominator.